Фундаменты глубокого заложения: кессоны. § vii.2

При залегании прочных грунтов на значительной глубине, когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным, а применение свай не обеспечивает необходимой несущей способности, прибегают к устройству ФГЗ. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения, например когда оно должно быть опущено на большую глубину – подземные гаражи и склады, ёмкости очистных, водопроводных и канализационных сооружений, здания насосных станций, водозаборы, глубокие колодцы для зданий дробления руды, непрерывной разливки стали и многие другие.

В настоящее время применяют следующие типы фундаментов глубокого заложения: опускные колодцы и кессоны, тонкостенные оболочки, буровые опоры и фундаменты, возводимые методом стена в грунте.

Опускные колодцы.

Представляют собой замкнутую в плане и открытую сверху и снизу полую конструкцию, бетонируемую или собираемую из сборных элементов на поверхности грунта и погружаемую под действием собственного веса или дополнительной пригрузки по мере разработки грунта внутри нее (рис.13.1 и 13.2.).

Рис.13.1 Последовательность устройства опускного колодца:

а – изготовление первого яруса опускного колодца на поверхности грунта; б – погружение первого яруса опускного колодца в грунт; в – наращивание оболочки колодца; г – погружение колодца до проектной отметки; д – заполнение бетоном полости опускного колодца в случае использования его как фундамента глубокого заложения

Рис.13.2. Формы сечений опускных колодцев в плане:

а – круглая; б – квадратная; в – прямоугольная; г – прямоугольная с поперечными перегородками; д – с закругленными торцевыми стенками

· Форма колодца в плане определяется конфигурацией проектируемого сооружения См. рис.13.2.

Наиболее рациональной является круглая форма, т.к. стенка круглого колодца работает только на сжатие, и при заданной площади основания обладает наименьшим наружным периметром, что уменьшает силы трения по их боковой поверхности, возникающие при погружении. Плоские же стенки опускных колодцев в основном будут работать на изгиб (что далеко не выгодно), но с другой стороны прямоугольная и квадратная форма позволяет более рационально использовать площадь внутреннего помещения.

В любом случае очертание колодца должно быть в плане симметричным, т.к. всякая асимметрия осложняет его погружение (прекосы, отклонения).

Конструкционные материалы для опускных колодцев:

Каменная или кирпичная кладка;

Ж/б- наиболее распространен:

1.Монолитные (только когда форма колодца в плане имеет сложное очертание, нет возможности изготовления сборных элементов, при проходке скальных грунтов и грунтов с большим числом валунов).

2.Сборные (наибольшее предпочтение)

· Погружению колодца в основание сопротивляются силы трения стен колодца о грунт. Для уменьшения трения колодцам придают коническую или цилиндрически уступчатую форму, с использованием тиксотропной суспензии. Оболочка опускного колодца из монолитного ж/б состоит из двух основных частей: 1 – ножевой; 2 – собственно оболочки. См. рис. 13.3.

Рис.13.3. Форма вертикальных сечений монолитных опускных колодцев:

а – цилиндрическая; б – коническая; в – цилиндрическая ступенчатая; 1 – ножевая часть опускного колодца; 2 – оболочка опускного колодца; 3 – арматура ножа колодца

· Ножевая часть шире стены оболочки на 100…150мм со стороны грунта.

· Толщина стен монолитных колодцев определяется из условия создания веса, необходимого для преодоления сил трения.

· Бетон должен быть прочным, плотным (вес) и иметь высокую водонепроницаемость – В35.

· Монолитные ж/б колодцы изготавливают непосредственно над местом их погружения на специально изготовленной выровненной площадке. При >10м его бетонирование ведется отдельными ярусами, последовательно. К опусканию преступают только после набором бетоном 100% прочности, что непроизводительно (потеря времени).

К недостаткам монолитных ж/б опускных колодцев также следует отнести:

Большой расход материалов, не оправданный требованиями прочности;

Значительная трудоемкость, за счет их изготовления полностью на строительной площадке;

· Преимущества монолитных колодцев:

Простота изготовления;

Возможность придания им любой формы;

Отсутствие (как правило) опасности всплытия

· Из сборных опускных колодцев наибольшее распространение получили:

Колодцы из пустотелых прямоугольных элементов

Кессоны.

В сильно обводненных грунтах, содержащих прослойки скальных пород или твердых включений (валуны, погребенную древесину и т.д.) погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твердых включений.

В этом случае используется кессонный метод устройства фундаментов глубокого заложения, который был предложен во Франции в середине 19в.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведется насухо без водоотлива.

Рис.13.9. Схема устройства кессона:

а – для заглубленного помещения; б – для глубокого фундамента; 1 – кессонная камера; 2 – гидроизоляция; 3 – надкессонное строение; 4 – шлюзовой аппарат; 5 – шахтная труба

Метод является более дорогостоящим и сложным, поскольку требует специального оборудования. Кроме того, этот способ связан с пребыванием людей в зоне повышенного давления воздуха, что значительно сокращает продолжительность рабочих смен (до 2 часов при 350…400кПа(max)) при максимальной глубине 35-40м.

В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.

Кессонная камера, высота которой по санитарным нормам принимается не менее 2,2 м, выполняется из ж/б и состоит из потолка и стен, называемых консолями.

Способ погружения кессона аналогичен опускному колодцу. Глубину погружения кессона и его внешние размеры определяют так же, как и для опускных колодцев.

Шлюзовой аппарат, соединенный с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее.

Грунт в камере кессона разрабатывается или ручным или гидромеханическим способом.

Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханизмами выносится за ее пределы. Такой способ опускания кессона называется слепым.

Тонкостенные оболочки.

Тонкостенная оболочка представляет собой пустотелый цилиндр из обычного или предварительно напряженного ж/б. Они начали широко применяться только с появлением мощных вибропогружателей, позволяющих погружать в грунт элементы больших размеров.

Рис.13.10. Конструкция типовой оболочки диаметром 1,6м

Оболочки выпускаются секциями длиной от 6 до 12м и наружным диаметром от 1 до 3м. Длина секций кратна 1м, толщина стенок составляет 12см. На рис 13.10 в качестве примера показана секция оболочки диаметром 1,6м.

Наилучшими типами стыков являются сварной, применяемый для предварительной сборки на строительной площадке, и фланцевый на болтах, используемый для наращивания оболочек в процессе погружения. (рис.13.11)

Рис.13.11. Стыки секций оболочек:

а – сварной стык; б – фланцево-болтовой стык; 1 – стержень продольной арматуры; 2 – ребро; 3 – обечайка; 4 – сварной шов; 5 – стальной стержень; 6- болт

Погружение оболочек в грунт осуществляется, как правило, вибропогружателями. Для облегчения погружения, а также для предотвращения разрушения оболочки при встрече с твердыми включениями конец нижней секции снабжается ножом.

Обычно для повышения сопротивления оболочки действию значительных внешних усилий обычно ее полость после погружения до заданной глубины заполняется бетоном. При погружении в песчаные грунты внизу оставляют уплотненное песчаное ядро высотой не менее 2м. (рис.13.12а)

Рис.13.12 Конструкция сборных железобетонных оболочек:

а – оболочка с уплотненным песчаным ядром; б – усиленная оболочка с несущей диафрагмой; в – оболочка, заделанная в скалу; г – оболочка с уширенной пятой; 1 – оболочка; 2 – бетонное заполнение; 3 – нож; 4 – несущая диафрагма; 5 – арматурный каркас; 6 – буровая скважина в скальной породе; 7 – уширенная пята

Благодаря этому сохраняется естественная плотность песчаного грунта в основании оболочки, что обеспечивает лучшее использование его несущей способности.

Наиболее рационально тонкостенные оболочки применять при больших вертикальных и горизонтальных нагрузках. Такие сочетания нагрузок наиболее характерны для мостов, гидротехнических и портовых сооружений.

Буровые опоры.

Буровые опоры представляют собой бетонные столбы, которые возводят путем укладки бетонной смеси в предварительно пробуренные скважины. Укладка бетонной смеси производится под защитой либо глинистого раствора, либо обсадных труб, извлекаемых при бетонировании.

Технология устройства буровых опор та же, что и буронабивных свай. По существу, они представляют собой буронабивные сваи большого сечения (d >80см).

Нижние концы буронабивных опор обязательно доводят до плотных грунтов, поэтому они работают как стойки. Иногда их делают с уширенной пятой.

Буровые опоры обладают значительной несущей способностью (e1000т) и рассчитываются как сваи-стойки.

Стена в грунте.

Этот способ предназначен для устройства фундаментов и заглубленных в грунт сооружений (рис. 13.13).

Рис.13.13. Конструкции, сооружаемые способом «стена в грунте»: а – котлованы в городских условиях; б – подпорные стенки; в – тоннели; г – противофильтрационные диафрагмы; д – подземные резервуары

Способ заключается в том, что сначала по контуру будущего сооружения в грунте отрывается узкая глубокая траншея (b=60…100 см, Hd40…50 м) с помощью жесткого грейфера или механизированного траншеекопателя на проектную глубину с врезкой в водоупор, которая затем заполняется бетонной смесью или сборными железобетонными элементами.

Возведенная таким образом стена может служить конструктивным элементом фундамента, ограждением котлована или стеной заглубленного помещения.

Помимо заглубленных сооружений способом «стена в грунте» можно устраивать противофильтрационные завесы. Устройство «стены в грунте» наиболее целесообразно в водонасыщенных грунтах при высоком уровне подземных вод. Способ особенно эффективен при заглублении стен в водоупорные грунты, что позволяет полностью отказаться от водоотлива или глубинного водопонижения.

Существенным достоинством способа является возможность устройства глубоких котлованов и заглубленных помещений вблизи существующих зданий и сооружений без нарушения их устойчивости, что особенно важно при строительстве в стесненных условиях, а также при реконструкции сооружений.

Технология устройства «стены в грунте».

1. Сооружение «стена в грунте» начинается с устройства сборной или монолитной форшахты, которая служит направляющей для землеройных машин, опорой для подвешивания армокаркасов, бетолитных труб, сборных железобетонных панелей и т.п. и обеспечивает устойчивость стенок в верхней части.

2. Отрывка котлована отдельными захватками. Откопав первую захватку, на всю глубину стены по ее торцам устраивают ограничители, арматурный каркас и укладывают бетонную смесь.

3. Затем переходят к захватке «через одну», а после ее устройства – к промежуточной и т.д., в результате получается сплошная стена (рис. 13.14).

Рис.13.14. Последовательность возведения «стены в грунте»:

а – первая очередь работ; б – вторая очередь работ; 1 – форшахта; 2 – базовых механизм; 3 – бетонолитная труба; 4 – глинистый раствор; 5 – грейфер; 6 – траншея под одну захватку; 7 – арматурный каркас; 8 – бетонная смесь; 9 – забетонированная секция; 10 – готовая «стена в грунте»

Такой метод называется методом последовательных захваток или секционным методом.

Для удержания стен захватки против обрушения по мере углубления в нее подливают тиксотропный глинистый раствор.

После возведения «стены в грунте» по всему периметру сооружения (т.е. конструкция замыкает в плане будущее сооружение) поэтапно удаляют грунт из внутреннего пространства. При необходимости на каждом этапе по периметру устраивают грунтовые анкера или распорки. Если крепления не изготавливаются, то устойчивость стены при удалении грунта обеспечивается ее заделкой в основание. После полного удаления грунта из внутреннего пространства до проектной отметки возводят внутренние конструкции.

В настоящее время кессоны применяются, когда:

  • - подземное сооружение возводится в непосредственной близости от существующих зданий или сооружений и есть опасность выноса или выпора грунта из-под подошвы их фундаментов;
  • - подземное сооружение строится в сильно обводненных грунтах. В этих условиях опускной колодец требует больших затрат на водоотлив, и поэтому экономически выгоднее использовать кессон. Кроме того, кессон находит применение при проходке горизонтальных туннелей в водонасыщенных грунтах.

По назначению различают кессоны: для устройства глубоких фундаментов и заглубленных зданий; для выполнения различных строительных работ под водой.

По способу опускания кессоны делят на: опускаемые с поверхности земли и из котлованов; островные, погружаемые на местности, покрытой водой, с искусственных островков; наплавные, опускаемые с воды путем затопления кессонной камеры, которой предварительно сообщается плавучесть .

Озеров Н.В. Кессонные фундаменты

Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Основания и фундаменты

VII.2.2. Элементы кессона и оборудование для его опускания

VII.2.2.а. Кессоны для устройства глубоких фундаментов и заглубленных зданий

Собственно кессон (рис. VII-22) состоит из кессонной камеры, надкессонного строения, гидроизоляции Обычно кессонная камера устраивается из железобетона и лишь в редких случаях — из металла. Форма сечения кессонной камеры — прямоугольная, квадратная или круглая. Стенки камеры наклонные и заканчиваются ножом (рис. VII-23). Высота камеры от банкетки до потолка принимается не менее 2,2 м. В потолке оставляются отверстия для установки шахтной трубы, патрубков для трубопроводов сжатого воздуха, воды, электроэнергии.

Рис. VII-22.

а — для заглубленного здания; б — для глубокого фундамента; 1 — кессонная камера; 2 — надкессонное строение; 3 — гидроизоляция; 4 — шлюзовой аппарат

Рис. VII-23.

а — тупой; б — с резцом; 1 — опалубка; 2 — хомуты

Надкессонное строение выполняется в зависимости от назначения кессона как колодец с железобетонными стенками (рис. VII-22, а ) или в виде сплошного массива из монолитного бетона или железобетона (рис. VII-22, б ). Иногда в конструкции надкессонного строения предусматривается установка по наружному контуру кессона тонких железобетонных плит-оболочек, выполняющих роль внешней опалубки. С внутренней стороны плиты-оболочки снабжается выпусками арматуры или покрываются мелким щебнем (щебеночная шуба). То и другое служит связью для бетона, укладываемого в надкессонное строение.

Гидроизоляция наносится на наружные стенки кессона для защиты от проникания воды внутрь кессона. В качестве гидроизоляции применяются торкрет, покраска битумно-бензиновым раствором, штукатурка из холодных битумных мастик и из горячих асфальтовых растворов, металлические листы, свариваемые в виде ванны. Перед нанесением гидроизоляции поверхность бетона должна быть хорошо очищена от грязи, краски, масляных пятен и т.п. Удаляют также слой слабого бетона, выступы и наплывы на поверхности бетона, расчищают каверны.

VII.2.2.б. Наплавные кессоны

При возведении фундамента, опоры или заглубленного здания вдали от берегов водоема при значительных глубинах воды, в связи с чем устройство искусственных островков становится сложным и экономически невыгодным, используют наплавные кессоны.

Наплавной кессон (рис. VII-24) состоит из кессонной камеры, замкнутой камеры равновесия, открытой сверху центральной шахты, регулировочных шахт, рабочего балласта на потолке камеры.

Рис. VII-24.

а — транспортирование кессона к месту погружения; б — погружение кессонной камеры; в — опускание камеры на дно; г — выполнение работ по кладке фундамента; 1 — центральная шахта; 2 — регулировочная шахта; 3 — замкнутая камера равновесия; 4 — кессонная камера; 5 — балласт

Камера равновесия, центральная и четыре регулировочные шахты наполняются водой, которая служит балластом кессона при его погружении. Для всплытия кессона водный балласт удаляется из камеры равновесия сжатым воздухом и из шахт — насосами .

VII.2.2.в. Оборудование для опускания кессонов

В СССР наибольшее распространение получил шлюзовой аппарат конструкции Н.И. Филиппова. Он предназначен для шлюзования людей и грузов, поступающих в кессонную камеру, и выполнения грузоподъемных операций при спуске в камеру или подъеме различных грузов из нее. Шлюзовой аппарат соединен с кессонной камерой шахтными трубами.

Схема шлюзового аппарата представлена на рис. VII-25. Он состоит из центральной камеры, пассажирского прикамерка, грузового прикамерка. Сверху центральной камеры расположен подъемный механизм, состоящий из барабана, редуктора и электродвигателя.

К барабану на стальном канате подвешена бадья. Пассажирский и грузовой прикамерки имеют подвесные на роликах двери, открывающиеся только внутрь. Для герметичности при шлюзовании двери снабжены резиновыми прокладками. Сжатый воздух от компрессорной станции подается в центральную камеру и прикамерки по трубопроводу.

Рис. VII-25.

1 — центральная камера; 2 — трубопровод; 3 — пассажирский прикамерок; 4, 5 — подвесные двери; 6 — бадья; 7 — рельсовый путь; 8 — вагонетка; 9 — грузовой прикамерок; 10 — механизм подъем; 11 — лаз для людей; 12 — перегородка; 13 — грузовое отделение; 14 — овальный фланец

В центральной камере и грузовом прикамерке уложен рельсовый путь под вагонетку. Грунт, поднятый из кессонной камеры в бадье, выгружается в вагонетку с откидным дном и выдается через грузовой прикамерок наружу, где вагонетка разгружается в специально устроенный желоб. Внизу центральная камера заканчивается овальным фланцем, к которому приболчивается шахтная труба. Шахтные трубы состоят из звеньев длиной по 2 м, соединяемых между собой болтами. Внутри шахтной трубы имеется перегородка, разделяющая трубу на два отделения — людской лаз и грузовое отделение. Людской лаз оборудован лестницей, а грузовое отделение — направляющими устройствами для спуска-подъема бадьи.

Трубопроводы для подачи сжатого воздуха монтируются из двух ниток, идущих параллельно от компрессорной станции. Диаметр трубопроводов устанавливается расчетом в зависимости от его длины и расхода сжатого воздуха. От каждой нитки магистрального воздухопровода делают три отвода — два для подачи сжатого воздуха в кессонную камеру и один в центральную камеру и прикамерки шлюзового аппарата. Рабочей является одна из ниток воздухопровода, вторая — резервная.

Компрессорная станция монтируется, как правило, из стационарных компрессоров производительностью 10—20 м 3 /мин с электроприводом. Количество компрессоров определяется по максимально возможному расходу воздуха. Кроме того, на случай аварии должны быть запасные компрессоры. Согласно правилам техники безопасности, резервная мощность компрессорной станции должна быть: при одном рабочем компрессоре не меньше 100%, при двух — не менее 50%, при трех и более — не меньше 33% рабочей мощности. Технические данные воздушных компрессоров стационарного типа, применяемых на кессонных работах, приведены в табл. VII-3.

Таблица VII-3

Технические данные воздушных компрессоров стационарного типа

Показатель Марка компрессора
В-300-2К 2Р-20/8 160В-10/8 200В-10/8 2СА-8 КВ-200
Производительность, м 3 /мин 40 20 20 10 10 4,5
Давление воздуха после II ступени, МПа 0,8 0,8 0,8 0,8 0,8 0,6
Частота вращения, об/мин 330 500 720—735 720 480 650
Мощность двигателя, кВт 250 120 140 75 75 50
Габариты, мм:
длина
ширина
высота

3300
1820
2200

1800
1500
2000

1715
1910
1675

1350
962
1430

1550
1670
1870

1100
665
1130
Вес, кН 80 45 28 14,5 32 7,5
Охлаждение Водяное

На строительстве, если максимальное давление сжатого воздуха в кессоне превышает 0,15 МПа, обязательно устанавливается лечебный шлюз для заболевших кессонной болезнью.

Оборудование для гидромеханической разработки грунта в камере кессона состоит из гидромониторов (рис. VII-13) и гидроэлеваторов (рис. VII-14). В комплекс одной установки для гидромеханической разработки грунта входят два гидромонитора и один гидроэлеватор. Принято считать, что одним гидромонитором можно обслужить в песчаных и супесчаных грунтах 150—250 м 2 , а в глинистых грунтах — 100—150 м 2 площади кессона.

Величины удельных расходов мониторной воды и оптимальных скоростных напоров приведены в табл. VII-4 и VII-5.

Таблица VII-4

Удельный расход мониторной воды

Таблица VII-5

Оптимальные скоростные напоры

Опускной колодец представляет собой оболочку, погружаемую в грунт путем удаления его из-под оболочки и из ограничиваемого ею пространства. В большинстве случаев в процессе погружения оболочка остается открытой сверху, и разработки грунта ведется при атмосферном давлении. В условиях значительного притока грунтовых вод на некоторой глубине опускной колодец может быть снабжен воздухонепроницаемым покрытием и таким образом превращен в кессон, если это экономически оправдано.

Опускные колодцы применяются для устройства опор глубокого заложения, насосных станций, подземных резервуаров и т. п. в тех случаях, когда выполнение работ по возведению этих сооружений в открытом котловане экономически нецелесообразно. Опускные колодцы условно можно разделить по их назначению: колодцы-опоры, колодцы-емкости, колодцы-помещения.

Практически колодец может отвечать двум, а иногда и всем грем указанным назначениям.

Внутреннее пространство колодца, если он служит опорой, может быть заполнено кладкой или хорошо дренирующими материалами или оставаться незаполненным. Оно может быть разделено по всей высоте колодца или его части перегородками на отдельные камеры. Таким образом, колодцы бывают без перегородок и многоячейковые - разделенные на отдельные камеры.

Основной частью опускного колодца является оболочка, которая включает наружные стены, снабженные внизу скошенной ножевой частью, и перегородки, обычно не имеющие ножевой части.

После окончания погружения оболочки в грунт устраивается днище колодца. Выбор конструкции днища зависит от назначения колодца. В тех случаях, когда не требуется увеличения площади опирания колодца на грунт, днище может отсутствовать.

В состав конструкции колодцев, используемых как емкости или помещения, могут быть включены также покрытия, перекрытия, специальные устройства для установки оборудования и т. п.

Колодцы могут быть каменные (из кирпичной или бутовой кладки), бетонные или бутобетонные, железобетонные, деревянные или деревобетонные, а также стальные.

В настоящей главе рассматриваются бетонные и железобетонные опускные колодцы. Они имеют ряд преимуществ по сравнению с опускными колодцами из других материалов, а именно:

а) бетонные и железобетонные колодцы обладают значительной прочностью и жесткостью и потому хорошо работают при перекосах, защемлении и т. п., когда в одном и том же сечении колодца возникают усилия разных знаков, при этом им может быть придана любая форма в плане и вертикальном разрезе;

б) они обычно обладают собственным весом, достаточным для преодоления сил трения грунта по боковой поверхности колодца; при погружении же стальных и деревянных колодцев для этого необходим специальный груз.


Кессонный метод возведения фундаментов глубокого заложения применяют в тех случаях, когда наблюдается значительный приток воды и осложняются работы по осушению а также когда грунты содержат крупные включения твердых пород. Кессоны применяют в непосредственной близости от сооружений, когда есть опасность выпора грунта из-под их подошвы.

Кессон состоит из кессонной камеры, подкессонного строения и шлюзового устройства. Кессонную камеру обычно делают из железобетона. Стенки камеры заканчиваются ножом. Высота камеры от банкетки до потолка принимается не менее 2,2 м. В потолке камеры предусмотрено отверстие для установки шахтной трубы. Надкессонное строение чаще всего выполняют в виде сплошного массива из монолитного бетона или железобетона. Для опускания и подъема людей и выполнения грузоподъемных операций предусматривается шлюзовой аппарат, который соединен с кессонной камерой шахтными трубами. Сверху кессон оснащен подъемным механизмом. Для подачи сжатого воздуха монтируются трубопроводы из двух ниток: рабочей и резервной. Для обеспечения сжатым воздухом монтируется компрессорная.

Сущность метода заключается в том, что во время погружения кессона в кессонную камеру нагнетается сжатый воздух, предотвращающий поступление в камеру подземных вод и наплывов грунта. Разработку грунта ведут в осушенном пространстве камеры.

Кессон является конструктивной разновидностью опускного колодца. Кессонный метод применяют при значительном притоке воды, а также в непосредственной близости от существующих зданий, когда есть опасность выпора грунта из-под их подошвы. Сущность метода заключается в том, что во время погружения кессона в кессонную камеру нагнетается сжатый воздух, предотвращающий поступление в рабочую камеру подземных вод и наплывов грунта. Кессон состоит из кессонной (рабочей) камеры, надкессонного строения и шлюзового устройства (рис. 3.22). Кессонную камеру изготавливают, как правило, из железобетона (реже - из металла). Стенки камеры заканчиваются стальным ножом. Высота камеры от банкетки до потолка принимается не менее 2,2 м. В потолке камеры предусмотрено отверстие для установки шахтной трубы, через которую производится подъем и опускание людей и извлечение разработанного грунта. Шахтная труба сверху заканчивается шлюзовым аппаратом, позволяющим сохранять в камере рабочее давление при грузоподъемных операциях. Надкессонное строение чаще всего выполняют в виде сплошного массива из монолитного бетона (для увеличения веса). Подача сжатого воздуха в камеру осуществляется по трубопроводу, имеющему в обязательном порядке резервную нитку. Разработку грунта ведут в осушенном пространстве камеры. При этом в камере, в шахтной трубе и в шлюзовом аппарате давление воздуха на 10% превышает гидростатический напор воды. При подаче грунта в шлюзовой аппарат закрывают люк в шахтную трубу и затем снижают давление в шлюзовом аппарате до атмосферного. После чего открывают наружную дверь и вывозят поднятый из камеры грунт. Кессон, как и опускной колодец, погружается в грунт под действием собственной массы. Погружению здесь препятствуют не только силы трения грунта, но и избыточное давление в кессонной камере. Эффективность погружения определяется следующим соотношением активных и реактивных сил:

где Qj - вес кессонного сооружения, кН; Q 2 - вес надкессонного заполнения (пригруза), кН; Т - сила бокового трения кессона о грунт, кН; P t - давление грунта под ножом кессона, кПа; Fj - площадь внутренней поверхности ножевой части, м 2 ; Р 2 - избыточное давление воздуха в кессоне, кПа; F 2 - площадь кессона по наружному очертанию, м 2 .

Рис. 3.22.

  • 1 - подмости; 2 - шлюзовой аппарат; 3 - материальный шлюзовой прикамерок; 4 - людской шлюзовой прикамерок; 5 - шахтные трубы;
  • 6 - трубопровод сжатого воздуха; 7 - бадья с грунтом; 8 - надксссонная кладка; 9 - надкессонная обшивка; 10 - потолок кессона; 11 - кессонная камера; 12 - стены кессона; 13 - лестница; 14 - тельфер; 15 - вагонетка

с грунтом

По мере опускания кессона увеличиваются силы трения при одновременном увеличении давления воздуха в камере, что приводит к замедлению погружения и иногда к остановке. В этом случае используют «форсированный способ посадки» кессона. Для этого по периметру ножа разрабатывают траншею глубиной до 0,5 м, затем рабочие покидают кессонную камеру, и избыточное давление в ней снижают наполовину В результате нарушения равновесия активных и реактивных сил кессон погружается до дна траншеи. После этого давление воздуха опять поднимают и разрабатывают грунт в центре камеры.

Учитывая вредное воздействие сжатого воздуха на организм человека, наибольшее избыточное давление в камере не должно превышать значения 0,4 Мпа, что определяет максимальную глубину погружения кессона - 40 м от уровня воды. При максимальном давлении (0,35- 0,4 Мпа) рабочему разрешается находиться не более 2-х часов. Из них около 1-го часа тратится на шлюзование и вышлюзовывание. С учетом сказанного при значительных глубинах погружения кессонов применяют гидромеханические способы разработки грунта с использованием гидромониторов и гидроэлеваторов или эжекторов с дистанционным управлением механизмами. Оператор при этом находится в специальной надкессонной камере при нормальном давлении воздуха.

Довольно часто строительство фундаментов предполагает использование так называемых кессонов. Кессоны активно применяются в процессе строительства различных типов глубоких фундаментов в водоносных грунтах или же на той местности, которая покрыта водой. Кроме того, без них нельзя обойтись и в процессе возведения всевозможных подземных построек, будь то насосные станции, водозаборы и так далее.

Кессоны-фундаменты

Кроме того, кессоны могут выступать в качестве отдельного вида фундамента. В данном случае они в первую очередь востребованы в случае с полускальными или же скальными основаниями. Также они незаменимы на малосжимаемых грунтах (однако при уровне их залегания не более 40 метров от уровня воды).

Использование кессонов

Стоимость , в отличие от кессонов, намного ниже. Однако без кессонов иногда попросту не обойтись. Это касается тех случаев, когда все другие способы строительства глубоких фундаментов по тем или иным причинам недоступны. Это может быть обусловлено опасностью выноса или же выпора грунта из-под подошвы смежных строений. Помимо этого, кессоны - незаменимый инструмент при подводных работах.

Конструкция кессонов

На самом деле, их конструкции чрезвычайно разнообразны. Однако, как правило, все кессоны будут состоять из следующих частей:

  • кессонная камера;
  • шлюзовой аппарат;
  • шахтные трубы.

В качестве исходного материала для камер выступает железобетон. Что касается аппарата и труб, - высокопрочная сталь.

По словам специалистов, проект цокольного этажа может предполагать устройство различных типов . Как и фундаменты, кессоны также бывают нескольких видов.

Классификация кессонов

Согласно своему назначению, все кессоны делятся на следующие типы:

  1. Кессоны-фундаменты. Они представленные в виде так называемых глубоких фундаментов. Их камеры входят в состав строящихся объектов. В данном случае речь идет о всевозможных мостовых опорах, водоприемных колодцах, насосных станциях и так далее.
  2. Второй тип кессонов - съемные кессоны, которые будут находиться под водой только в процессе выполнения строительных работ в камере. После этого их поднимают и используют на любом другом подходящем для этого объекте.

Согласно способу опускания, все кессоны делятся на:

  1. Кессоны, которые опускаются непосредственно с поверхности земли либо же из котлованов.
  2. Островные кессоны. Их опускают на местности, покрытой водой со специальных искусственно созданных островков.
  3. Наплавные кессоны будут опускаться с воды методом затопления кессонной камеры. Ей загодя сообщается плавучесть.


Похожие публикации