Как найти длину стропильной ноги. Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Сбор нагрузок

Предварительно, для определения нагрузок, задаемся сечением стропильной ноги 75х225 мм. Постоянная нагрузка на стропильную ногу подсчитана в табл. 3.2.

Таблица 3.2 Расчетная постоянная нагрузка на стропильную ногу, кПа

Эксплуата-

Предельное

Элементы и нагрузки

γ fm

значение

значение

нагрузки

нагрузки

Стропильная нога 0,075*0,225*5/0,95

g стр. е =0,372

g c тр. m = 0,403

Расчетная предельная нагрузка на стропильную ногу (сочетание постоянная плюс снеговая)

Геометрическая схема стропил

Схемы к расчету стропильной ноги показаны на рис. 3.2. При ширине коридора в осях =3,4 м расстояние между продольными ося­ми наружной и внутренней стен.

Расстояние между осями мауэрлата и лежня с учетом привязки к оси (

=0,2 м)м. Устанавливаем подкос под углом β = 45° (уклонi 2 = 1). Уклон стропил равен уклону кров­ли i 1 =i = 1/3 = 0,333.

Чтобы определить необходимые для расчета размеры можно вычертить геометрическую схему стропил в масштабе и измерять расстояния линейкой. Если мауэрлат и лежень находятся на одном уровне, то пролеты стропильной ноги можно определить по формулам


Высоты узлов h 1 =i 1 l 1 =0,333*4,35=1,45 м; h 2: = i 1 l =0,333*5,8=1,933 м. Отметку высоты: ригеля принимаем на 0,35 м ниже точки пересечения осей стропильной ноги и стойки h = h 2 - 0,35 (м) = 1,933 -0,35 = 1,583 м.

Усилия в стропильной ноге н ригеле

Стропильная нога работает как трехпролетная неразрезная балка. Просадки опор могут изменять опорные моменты в неразрезных балках. Если считать, что от просадки опоры изгибающий момент на ней стал равным нулю, то мож­но условно врезать шарнир в место нулевого момента (над опорой). Для расчета стропильной ноги с некоторым запасом прочности считаем, что просадка под­коса снизила до нуля опорный изгибающий момент над ним. Тогда расчетная схема стропильной ноги будет соответствовать рис. 3.2, в.

Изгибающий момент в стропильной ноге

Для определения распора в ригеле (затяжке) считаем, что опоры просели та­ким образом, что опорный момент над подкосом равен М 1 а над стойками -нулю. Условно врезаем шарниры в места нулевых моментов и рассматриваем среднюю часть стропил как трехшарнирную арку пролетом l cp = 3,4 м. Распор в такой арке равен


Вертикальная составляющая реакции подкоса

Используя схему рис. 3.2.г, определим усилие в подкосе


Рис. 3.2. Схемы для расчета стропил

а-поперечный разрез чердачного покрытия; б -схема для определения рас­четной длины стропильной ноги; в - расчетная схема стропильной ноги; г - схема для определения распора в ригеле; л - тоже для схемы с одной про­дольной стеной; 1 - мауэрлат; 2 - лежень; 3 - прогон; 4 - стропильная нога; 5 -стойка; 6 - подкос; 7 - ригель (затяжка); 8 - распорка; 9, 10 -упорные бруски; 11 - кобылка; 12 - накладка.

Расчет стропильной ноги по прочности нормальных сечений

Требуемый момент сопротивления прогона


По прил. М принимаем ширину стропильной ноги b = 5 см и находим тре­буемую высоту сечения


По прил. М принимаем доску сечением 5х20 см.

В проверке прогибов стропильной ноги нет необходимости так как она на­ходится в помещении с ограниченным доступом людей.

Расчет стыка досок стропильной ноги.

Поскольку длина стропильной ноги больше чем 6,5 м необходимо выполнить ее из двух досок со стыком в нахлестку. Размещаем центр стыка в месте опирания на подкос. Тогда изгибающий момент в стыке при просадке подко­са М 1 = 378,4 кН*см.

Стык рассчитываем аналогично стыку прогонов. Принимаем длину нахле­стки l нахл =1,5 м= 150см, гвозди диаметром d = 4 мм = 0,4 см и длиной l гв = 100 мм.

Расстояние между осями гвоздевых соединений

150 -3*15*0,4 =132 см.

Усилие воспринимаемое гвоздевым соединением

Q=M оп /Z=378,4/ 132 =3,29 кН.

Расчетная длина защемления гвоздя с учетом нормируемого предельного зазора между досками δ Ш =2 мм при толщине доски δ Д = 5,0 см и длине острия гвоздя l,5d

а р = l гв -δ д -δ ш -l,5d = 100-50-2-1,5*4 = 47,4 мм = 4 ; 74 см.

В расчете нагельного (гвоздевого) соединения:

– толщина более тонкого элемента a = a p =4,74 см;

– толщина более толстого элемента с = δ д =5,0 см.

Находим отношение а/с = 4,74/5,0 = 0,948

По прил. Т, находим коэффициент k н =0,36 кН/см 2 .

Находим несущую способность одного шва одного гвоздя из условий:

– смятия в более толстом элементе


= 0,35*5*0,4*1*1/0,95 = 0,737 кН

– смятия в более тонком элементе


= 0,36*4,74*0,4*1*1/0,95 = 0,718 кН

– изгиба гвоздя

= (2,5* 0,4 2 + 0,01* 4,74 2)

/0,95=0,674 кН

– но не более кН

Из четырех значений выбираем наименьшее Т = 0,658 кН.

Находим необходимое число гвоздей п гв Q / T =2,867/0,674=4,254.

Принимаем п гв = 5.

Проверяем возможность установки пяти гвоздей в один ряд. Расстояние между гвоздями поперек волокон древесины S 2 =4d = 4*0,4 =1,6 см. Расстояние от крайнего гвоздя до продольной кромки доски S 3 =4d= 4*0,4 =1,6 см.

По высоте стропильной ноги h = 20 см должно поместится

4S 2 +2Sз=4*1,6+2*1,6 = 9,6 см<20 см. Устанавливаем гвозди в один ряд.

Расчет узла соединения ригеля со стропильной ногой

По сортаменту (прил. М) принимаем ригель из двух досок сечением bxh = 5x15 см каждая. Усилие в стыке сравнительно большое (Н = 12, кН) и может потребовать установки большого количества гвоздей в условиях строй­площадки. Для снижения трудоемкости монтажа покрытия проектируем болто­вое соединение ригеля со стропильной ногой. Принимаем болты диаметром d= 12 мм = 1,2 см.

В стропильной ноге нагели (болты) сминают древесину под углом к волок­нам α = 18,7 0 . По прил. Щ находим соответствующий углу α =18,7 0 коэффициент k α =0,95.

В расчете нагельного соединения толщина среднего элемента равна ширине стропильной ноги с=5 см, толщина крайнего элемента - ширине доски ригеля а = 5 см.

Определяем несущую способность одного шва одного нагеля из условий:

– смятия в среднем элементе

= 0,5*5* 1.2*0,95* 1 *1/0,95 = 3,00 кН

– смятия в крайнем элементе

= 0,8*5*1,2*1*1/0,95 = 5,05 кН;

– изгиба нагеля = (l,8* 1,2 2 + 0,02* 5 2)

/0,95=3,17 кН

- но не более кН

Из четырех значений выбираем наименьшее Т=3,00 кН.

Определяем требуемое число нагелей (болтов) при числе швов n ш =2


Принимаем число болтов n H =3.

В проверке сечения ригеля на прочность нет необходимости так как он име­ет большой запас прочности.

4. ОБЕСПЕЧЕНИЕ ПРОСТРАНСТВЕННОЙ ЖЕСТКОСТИ И ГЕОМЕТРИЧЕСКОЙ НЕИЗМЕНЯЕМОСТИ ЗДАНИЯ

Для составления технического проекта дома необходим расчет стропил. Существует несколько вариантов стропильных конструкций.

Стропильные ноги, которые опираются на две опоры, при этом не имеют тех или иных дополнительных упоров, называются стропилами без подкосов. Применяются они для односкатных крыш, пролёт которых около 4,5 метров или для двухскатных, пролёт которых около 9 метров. Стропильная система используется либо с передачей нагрузки распора на мауэрлат, либо без передачи.

Наслонные стропила без распоров

Стропило, работающее на изгиб, не передающее нагрузку на стены, имеет одну опору прочно закреплённую и свободно вращающуюся. Другая опора подвижна и свободно вращается. Данным условиям могут отвечать три варианта крепления стропил. Рассмотрим подробно каждый.

Подшивка верха стропильной ноги или верхняя опорная врубка устанавливаются в горизонтальном положении. Достаточно лишь изменить метод опирания на прогон, и стропильная нога тут же покажет распор. Данный расчёт стропильной ноги, по причине жёсткости условий создания верхнего узла, обычно не применяется для двухскатных вариантов крыш. Чаще всего её используют в строительстве односкатных крыш, так как малейшая неточность в изготовлении узла превратит схему безраспорную в распорную. Кроме того, в двухскатных типах крыш, в случае, если будет отсутствовать распор на мауэрлате, из - за прогиба стропил под действием нагрузки, может возникнуть разрушение узла конька кровли.

На первый взгляд данная система может показаться нереальной в исполнении. Так как на нижней части стропила создан упор в мауэрлат, по сути, система должна оказывать на него давление, то есть горизонтальное усилие. Однако распорной нагрузки она не показывает.

Таким образом, во всех трёх вариантах соблюдается следующее правило: один край стропила устанавливается на скользящей опоре, которая позволяет совершать поворот. Другой на шарнире, который допускает лишь поворот. Крепление стропильных ног на ползунах устанавливаются с помощью самых разных конструкций. Чаще всего их выполняют с помощью крепёжных пластин. Так же не исключено и крепление с помощью гвоздей, саморезов, с использованием накладных брусков и досок. Необходимо лишь верно выбрать вид крепежа, который будет препятствовать скольжению стропильной ноги в опоре.

Как рассчитать стропила

В процессе расчёта стропильной конструкции, как правило, принимают «идеализированную» схему расчёта. Исходя из того, что на крышу будет давить определённая равномерная нагрузка, то есть равная и одинаковая сила, которая действует равномерно по плоскостям скатов. В реальности равномерной нагрузки на всех скатах крыши не бывает. Так, ветер наметает снег на одни скаты и сдувает с других, солнце растапливает с одних скатов и не достаёт до остальных, та же ситуация и с оползнями. Всё это делает нагрузку на скаты совершенно неравномерной, хотя внешне это может быть и не заметно. Однако, даже при неравномерно распределённой нагрузке, все три выше перечисленных варианта стропильных креплений будут оставаться статически устойчивыми, но лишь при одном условии – жёстком соединении конькового прогона. При этом прогон либо подпирают накосными стропильными ногами, либо вводят во фронтоны стеновых панелей вальмовых крыш. То есть стропильная конструкция будет оставаться устойчивой лишь в том случае, если прогон конька будет прочно закреплён от возможного горизонтального смещения.

В случае изготовления щипцовой крыши и опоры прогона лишь на стойки, без опоры на стены фронтов, ситуация ухудшается. В вариантах под номером 2 и 3 , при уменьшении нагрузки на каком – либо скате, напротив расчёта на противоположном скате, крыша, возможно, будет сдвигаться в ту сторону, где нагрузка больше. Самый первый вариант, когда самый низ стропильной ноги производится с врубкой зубьями или с подшивкой бруска опоры, при этом, верх врубкой горизонтальной уложен на прогон, будет хорошо держать неравномерную нагрузку, однако лишь при условии совершенной вертикальности стоек, которые удерживают коньковый прогон.

Для того, что придать стропилам устойчивости, в систему включают горизонтальную схватку. Она незначительно, но всё же повышает устойчивость. Именно поэтому в тех местах, где со стойками пересекается схватка, её закрепляют гвоздевым боем. Утверждение, что схватка всегда работает лишь на растяжение, в корне не верно. Схватка является многофункциональным элементом. Так, в безраспорной стропильной конструкции она не работает при отсутствии снега на крыше, либо работает лишь на сжатие, когда на скатах появляется незначительная равномерная нагрузка. На растяжение конструкция работает лишь при просадке или при прогибе прогона конька под действием максимальной нагрузки. Таким образом, схватка является аварийным элементом стропильной конструкции, которая вступает в работу, когда крыша завалена большим количеством снега, коньковый прогон окажется прогнутым на максимальную рассчитанную величину, или же произойдут неравномерные непредвиденные просадки фундамента. Следствием может быть неравномерная просадка конькового прогона и стен. Таким образом, чем ниже будут установлены схватки, тем лучше. Как правило, их устанавливают на такой высоте, что бы они не создавали препятствий при ходьбе по чердаку, то есть на высоте около 2 метров.


Если в вариантах 2 и 3 нижний узел опирания стропил заменить на ползун с выносом края стропильной ноги за стену, то это позволит укрепить конструкцию и сделает её устойчивой статически при совершенно разнообразных сочетаниях конструкции.

Так же одним хорошим способом для повышения устойчивости конструкции является достаточно жёсткое закрепление низа стоек, которые будут поддерживать прогон. Их устанавливают способом врубки в лежень и закрепляют с перекрытиями любыми доступными способами. Таким образом, нижний узел опоры стойки превращается из шарнирного в узел с жёстким защемлением.

От способа крепления стропильных ног, не зависит то, как рассчитать длину стропил.

Сечение схваток, по причине развития в них довольно малых напряжений, не берут в расчёт стропил, а принимают довольно конструктивно. Для того, что бы снизить размер элементов, которые используются в процессе строительства стропильной конструкции, сечение схватки принимают того же размера, что и стропильной ноги, при этом могут применяться более тонкие диски. Схватки устанавливают либо с одной, либо с двух сторон стропила и крепят их болтами или гвоздями. Производя расчёт сечения стропильной конструкции, схватки вообще не учитываются, как будто их вообще нет. Единственным исключением становится прикручивание схваток к стропильным ногам болтами. В таком случае несущая способность древесины, по причине ослабления отверстия для болтов, уменьшается за счёт использования коэффициента 0,8. Проще говоря, если в стропильных ногах будут сверлиться дыры для установки болтовых схваток, то расчётное сопротивление необходимо брать в размере 0,8. При закреплении схваток на стропилах лишь гвоздевым боем, ослабление сопротивления дерева стропила не происходит.

Но необходимо произвести расчёт количества гвоздей. Расчёт производится на срез, то есть изгиб гвоздей. За расчётную силу принимают распор, который возникает при аварийном положении стропильной конструкции. Проще говоря, в расчёт соединения гвоздями схватки и стропильной ноги вводят распор, который отсутствует при стандартной работе стропильной системы.

Статическая неустойчивость стропильной безраспорной системы проявляется лишь на тех крышах, где нет возможности установить коньковый прогон, защищающий от горизонтального смещения.

В зданиях с вальмовыми типами крыш и с фронтонами из камня или кирпича, безраспорные системы стропил достаточно устойчивы и в проведении мероприятий для обеспечения большей устойчивости нет никакой необходимости. Однако для противо аврийности конструкций всё же следует установить схватки. При установке болтов или шпилек в качестве креплений, следует обратить внимание на диаметр отверстий под них. Он должен быть одинаковым с диаметром болтов или чуть меньше. В случае аварийной ситуации схватка не станет работать до того, пока не будет выбран зазор между стенкой отверстия и шпилькой.

Обратите внимание, что в данном процессе низы стропильных ног разъедутся на расстояние от нескольких миллиметров, до нескольких сантиметров. Это может привести к сдвигу и прокрутке мауэрлата и к разрушению карниза стен. В случае распорных стропильных систем, когда мауэрлат прочно закреплён, данный процесс может стать причиной раздвижения стен.

Распорные наслонные стропила

Стропило, совершающее работу на изгиб и передающее нагрузку распора на стеновые панели, должно иметь не менее двух закреплённых опор.

Для расчёта данного вида стропильных систем, заменяем в предыдущих схемах нижние опоры с различными степенями свободы на опоры с единственной степенью свободы – шарнирной. Для этого, там, где их нет, прибиваются к краям стропильных ног бруски для опоры. Как правило, используется брусок, длина которого составляет не менее метра, а сечение около 5 на 5 см, учитывая гвоздевое соединение. В другом варианте можно устраивать опору в виде зуба. В первом варианте схемы расчёта, когда стропила упираются горизонтально в прогон, сшиваются верхние концы стропил либо гвоздями, либо болтом. Таким образом, получается шарнирная опора.

В результате расчётные схемы практически не меняются. Внутренние напряжения изгиба и сжатия остаются без изменений. Однако в прежних опорах появляется распорная сила. В верхних узлах каждой стропильной ноги исчезает противоположно направленный распор, происходящий из конца другой стропильной ноги. Таким образом, он не доставляет особых хлопот.

Края стропил, которые упираются друг в друга либо через прогон, возможно, проверить на смятие материала.

В стропильных распорных системах предназначение схватки иное – в аварийных ситуациях она работает на сжатие. В процессе работы она уменьшает распор на стены края стропил, однако полностью его не исключает. Полностью она сможет его снять, если закрепится в самом низу, между краями стропильных ног.

Обращаем ваше внимание, что использование распорных наслонных стропильных конструкций требует внимательного учёта воздействия силы распора на стены. Снизить данный распор возможно путём установки жёстких и прочных коньковых прогонов. Необходимо постараться увеличить жёсткость прогона с помощью установки стоек, консольных балок или подкосов, либо возвести строительный подъём. Особенно актуально это для домов из бруса, рубленых брёвен, легкого бетона. Бетонные, кирпичные и панельные дома гораздо легче переносят силу распора на стенах.


Таким образом, стропильная конструкция, возведённая по распорному варианту, является статически устойчивой при различных сочетаниях нагрузок, она не требует жёсткого крепления мауэрлата к стене. Для того, что бы удержать распор, стены здания должны быть массивными, снабжёнными монолитным железобетонным поясом по периметру дома. В случае аварийной ситуации, внутри распорной системы, которая работает на сжатие, схватка положение не спасёт, а лишь частично уменьшит распор, который передаётся на стены. Именно для того, что - бы не произошло аварийной ситуации, необходимо учесть все нагрузки, которые могут действовать на крышу.

Таким образом, какой бы формы не была выбрана крыша дома, вся стропильная система должна рассчитываться таким образом, что бы удовлетворять положениям надёжности и прочности. Сделать полный анализ стропильной конструкции – дело не лёгкое. В расчёт деревянных стропил необходимо включить большое количество различных параметров, включая распор, изгиб, возможные весовые нагрузки. Для более надёжного обустройства стропильной системы возможно установить более подходящие методы креплений. При этом не следует принимать размеры стропил, не произведя полный анализ их технических и функциональных способностей.

Расчёт сечения стропил

Сечение стропильных балок выбирается с учётом их длин и принимаемой нагрузки.

Так, брус длиной до 3 метров, выбирается с диаметром сечения 10 см.

Брус, длиной до 5 метров, - с диаметром сечения 20 см.

Брус, длиной до 7 метров – с диаметром сечения до 24 см.

Как рассчитать стропила - пример

Дан двухэтажный дом размером 8 на 10 метров, высота каждого этажа по 3 метра. Кровлей выбраны волнистые асбестоцементные листы. Кровля двухскатная, опорные стойки которой располагаются по центральной несущей стене. Шаг стропил 100 см. требуется подобрать длину стропил.

Как рассчитать длину стропил? Следующим образом: длину стропильных ног можно подобрать так, что бы на них уложить три ряда шиферных листов. Тогда необходимая длина: 1,65 х3 = 4,95 м. уклон кровли в таком случае будет равен 27,3°, высота образованного треугольника, то есть чердачного пространства, 2,26 метра.

1. Расчет несущих элементов покрытия

Стропильные ноги рассчитывают как свободно лежащие балки на двух опорах с наклонной осью. Нагрузка на стропильную ногу собирается с грузовой площади, ширина которой равна расстоянию между стропильными ногами. Расчетная временная нагрузка q должна быть расположена на две составляющие: нормальную к оси стропильной ноги и параллельно к этой оси.

2.1.1. Расчет обрешетки

Принимаем обрешетку из досок сечением 50´50 мм (r = 5,0 кН/м), уложенных с шагом 250 мм. Древесина — сосна. Шаг стропил 0,9 м. Уклон кровли 35 0 .

Расчет обрешетки под кровлю ведется по двум вариантам загружения:

а) Собственный вес кровли и снег (расчет на прочность и прогиб).

б) Собственный вес кровли и сосредоточенный груз.

Исходные данные:

1.Принимаем бруски 2-го сорта с расчетным сопротивлением R u =13 МПа и модулем упругости Е=1 ´ 10 4 МПа .

2.Условия эксплуатации Б2 (в нормальной зоне), m в =1 ; m н =1,2 для монтажной нагрузки при изгибе.

3.Коэффициент надежности по назначению g n =0,95 .

4.Плотность древесины r =500 кг/м 3 .

5.Коэффициент надежности по нагрузке от веса оцинкованной стали g f =1,05 ; от веса брусков g f =1,1 .

6.Нормативный вес снегового покрова на 1м 2 горизонтальной проекции поверхности земли S 0 =2400 Н/м 2 .



Расчетная схема обрешетки

Таблица 2.1

Сбор нагрузки на 1м.п. обрешетки, кН/м


где S 0 — нормативное значение веса снегового покрова на 1 м 2 горизонтальной

поверхности земли, принимаемое по табл. 4 , для IV снегового рай-

она S 0 = 2,4 кПа ;

m — коэффициент перехода от веса снегового покрова земли к

снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .

При загружении балки равномерно распределенной нагрузкой от собственного веса и снега наибольший изгибающий момент равен:

Кн м

При углах наклона кровли a³10° учитывают, что собственный вес кровли и обрешетки равномерно распределен по поверхности (скату) крыши, а снег — по ее горизонтальной проекции:

M x = M cos a = 0.076 cos 29 0 = 0.066 кН´м

M y = M sin a = 0.076 sin 29 0 = 0.036 кН´м

Момент сопротивления:

см

см

Прочность брусков обрешетки проверяют с учетом косого изгиба по формуле:

,

где M x и M y — составляющие расчетного изгибающего момента относительно главных осей X и Y.

R y =13 МПа

g n =0,95

,

Момент инерции бруска определяем по формуле:

cм 4

cм 4

Прогиб в плоскости, перпендикулярной скату:

м

Прогиб в плоскости, параллельной скату:

м,

где Е=10 10 Па — модуль упругости древесины вдоль волокон.

Полный прогиб:

= м

Проверка прогиба: ,

где = — предельно допустимый относительный прогиб, определяемый по табл. 16 .

При загружении балки собственным весом и сосредоточенным грузом наибольший момент в пролете равен:

Проверка прочности нормальных сечений:

где R y =13 МПа — расчетное сопротивление древесины изгибу.

g n =0,95 — коэффициент надежности по назначению.

Условия по первому и второму сочетаниям выполняются, следовательно принимаем обрешетку сечением b´h=0,05´0,05 с шагом 250 мм.

2.1.2. Расчет стропильных ног

Рассчитаем наслонные стропила из брусьев с однорядным расположением промежуточных опор под кровлю из оцинк. кр. железо. Основанием кровли служит обрешетка из брусков сечением 50 50 мм с шагом =0,25 м . Шаг стропильных ног =1,0 м . Материал для всех деревянных элементов – сосна 2-го сорта. Условия эксплуатации – Б2.

Район строительства – г. Вологда.

Расчетная схема стропильной ноги

Бруски обрешетки размещены по стропильным ногам, которые нижними

концами опираются на мауэрлаты (100 100), уложенные по внутреннему обрезу наружных стен. В коньковом узле стропила скрепляются двумя дощатыми накладками. Для погашения распора стропильные ноги стянуты ригелем – двумя парными досками. Угол наклона кровли 29 0 .

Производим сбор нагрузок на 1 м 2 наклонной поверхности покрытия, данные заносим в таблицу 2.2.

Таблица 2.2
Сбор нагрузки на 1м.п. стропильной ноги, кН/м


где S 0 — нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, принимаемое по табл. СНиП 4 , для IV снегового района S 0 = 2,4 кПа ;

m — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .

Производим статический расчет стропильной ноги как двухпролетной балки, нагруженной равномерно распределенной нагрузкой. Опасным сечением стропильной ноги является сечение на средней опоре.

Изгибающий момент в этом сечении:

Вертикальное давление в точке С, равное правой опорной реакции двухпролетной балки составляет:

=0,265 кН

При симметричной нагрузке обоих скатов вертикальное давление в точке С удваивается: кН.

Раскладывая это давление по направлению стропильных ног, находим сжимающее усилие в верхней части стропильной ноги:

кН



Похожие публикации