Защита диодов от обратного напряжения. Защита устройств от неправильной подачи полярности питания26.03.2015

При проектировании промышленных приборов, к которым предъявляются повышенные требования по надёжности, я не раз сталкивался с проблемой защиты устройства от неправильной полярности подключения питания. Даже опытные монтажники порой умудряются перепутать плюс с минусом. Наверно ещё более остро подобные проблемы стоят в ходе экспериментов начинающих электронщиков. В данной статье рассмотрим простейшие решения проблемы - как традиционные так и редко применяемые на практике методы защиты.

Простейшее решение, которое напрашивается с ходу - включение последовательно с прибором обычного полупроводникового диода.

Просто, дёшево и сердито, казалось бы чего ещё нужно для счастья? Однако, у такого способа есть очень серьёзный недостаток - большое напряжение падения на открытом диоде.

Вот типичная ВАХ для прямого включения диода. При токе в 2 Ампера напряжение падения составит примерно 0.85 вольт. В случае низковольтных цепей 5 вольт и ниже это очень существенная потеря. Для более высоковольтных такое падение играет меньшую роль, но есть ещё один неприятный фактор. В цепях с высоким током потребления на диоде будет рассеиваться весьма значительная мощность. Так для случая, изображённого на верхней картинке, получим:
0.85В х 2А = 1.7Вт.
Рассеиваемая на диоде мощность уже многовата для такого корпуса и он будет ощутимо греться!
Впрочем, если вы готовы расстаться с несколько большими деньгами, то можно применить диод Шоттки, который имеет меньшее напряжение падения.

Вот типичная ВАХ для диода Шоттки. Подсчитаем рассеиваемую мощность для этого случая.
0.55В х 2А = 1.1Вт
Уже несколько лучше. Но что же делать если ваше устройство потребляет ещё более серьёзный ток?
Иногда параллельно устройству ставят диоды в обратном включении, которые должны сгореть если перепутать напряжение питания и привести к короткому замыканию. Ваше устройство при этом скорее всего потерпит минимум повреждений, но может выйти из строя источник питания, не говоря уже о том, что сам защитный диод придётся заменить, а вместе с ним могут и дорожки на плате повредиться. Словом этот способ для экстрималов.
Однако, есть ещё один несколько более затратный, но весьма простой и лишённый перечисленных выше недостатков способ защиты - с помощью полевого транзистора. За последние 10 лет параметры этих полупроводниковых приборов резко улучшились, а цена наоборот сильно упала. Пожалуй то, что их крайне редко используют для защиты ответственных цепей от неправильной полярности подачи питания можно объяснить во многом инерцией мышления. Рассмотрим следующую схему:

При подаче питания напряжение на нагрузку проходит через защитный диод. Падение на нём достаточно велико - в нашем случае около вольта. Однако в результате между затвором и истоком транзистора образуется напряжение превышающее напряжение отсечки и транзистор открывается. Сопротивление исток-сток резко уменьшается и ток начинает течь уже не через диод, а через открытый транзистор.

Перейдём к конкретике. Например для транзистора FQP47З06 типичное сопротивление канала будет составлять 0.026 Ом! Нетрудно рассчитать что рассеиваемая при этом на транзисторе мощность для нашего случая будет всего 25 милливатт, а падение напряжение близко к нулю!
При смене полярности источника питания ток в цепи течь не будет. Из недостатков схемы можно пожалуй отметить разве то, что подобные транзисторы имеют не слишком большое пробивное напряжение между затвором и истоком, но слегка усложнив схему можно применить её для защиты более высоковольтных цепей.

Думаю читателям не составит труда самим разобраться как работает эта схема.

Уже после публикации статьи уважаемый пользователь в комментариях привел схему защиты на основе полевого транзистора, которая применяется в iPhone 4. Надеюсь он не будет возражать если я дополню свой пост его находкой.

При проектировании промышленных приборов, к которым предъявляются повышенные требования по надёжности, я не раз сталкивался с проблемой защиты устройства от неправильной полярности подключения питания. Даже опытные монтажники порой умудряются перепутать плюс с минусом. Наверно ещё более остро подобные проблемы стоят в ходе экспериментов начинающих электронщиков. В данной статье рассмотрим простейшие решения проблемы - как традиционные так и редко применяемые на практике методы защиты.

Простейшее решение, которое напрашивается с ходу - включение последовательно с прибором обычного полупроводникового диода.

Просто, дёшево и сердито, казалось бы чего ещё нужно для счастья? Однако, у такого способа есть очень серьёзный недостаток - большое напряжение падения на открытом диоде.

Вот типичная ВАХ для прямого включения диода. При токе в 2 Ампера напряжение падения составит примерно 0.85 вольт. В случае низковольтных цепей5 вольт и ниже это очень существенная потеря. Для более высоковольтных такое падение играет меньшую роль, но есть ещё один неприятный фактор. В цепях с высоким током потребления на диоде будет рассеиваться весьма значительная мощность. Так для случая, изображённого на верхней картинке, получим:

0.85В х 2А = 1.7Вт

Рассеиваемая на диоде мощность уже многовата для такого корпуса и он будет ощутимо греться!
Впрочем, если вы готовы расстаться с несколько большими деньгами, то можно применить диод Шоттки, который имеет меньшее напряжение падения.

Вот типичная ВАХ для диода Шоттки. Подсчитаем рассеиваемую мощность для этого случая.

0.55В х 2А = 1.1Вт

Уже несколько лучше. Но что же делать если ваше устройство потребляет ещё более серьёзный ток?

Иногда параллельно устройству ставят диоды в обратном включении, которые должны сгореть если перепутать напряжение питания и привести к короткому замыканию. Ваше устройство при этом скорее всего потерпит минимум повреждений, но может выйти из строя источник питания, не говоря уже о том, что сам защитный диод придётся заменить, а вместе с ним могут и дорожки на плате повредиться. Словом этот способ для экстрималов.

Однако, есть ещё один несколько более затратный, но весьма простой и лишённый перечисленных выше недостатков способ защиты - с помощью полевого транзистора. За последние 10 лет параметры этих полупроводниковых приборов резко улучшились, а цена наоборот сильно упала. Пожалуй то, что их крайне редко используют для защиты ответственных цепей от неправильной полярности подачи питания можно объяснить во многом инерцией мышления. Рассмотрим следующую схему:

При подаче питания напряжение на нагрузку проходит через защитный диод. Падение на нём достаточно велико - в нашем случае около вольта. Однако в результате между затвором и истоком транзистора образуется напряжение превышающее напряжение отсечки и транзистор открывается. Сопротивление исток-сток резко уменьшается и ток начинает течь уже не через диод, а через открытый транзистор.

Перейдём к конкретике. Например для транзистора FQP47З06 типичное сопротивление канала будет составлять 0.026 Ом! Нетрудно рассчитать что рассеиваемая при этом на транзисторе мощность для нашего случая будет всего 25 милливатт, а падение напряжение близко к нулю!

При смене полярности источника питания ток в цепи течь не будет. Из недостатков схемы можно пожалуй отметить разве то, что подобные транзисторы имеют не слишком большое пробивное напряжение между затвором и истоком, но слегка усложнив схему можно применить её для защиты более высоковольтных цепей.

Думаю читателям не составит труда самим разобраться как работает эта схема.

Уже после публикации статьи уважаемый пользователь Keroro в комментариях привел схему защиты на основе полевого транзистора, которая применяется в iPhone 4. Надеюсь он не будет возражать если я дополню свой пост его находкой.

Защита устройств от смены полярности питания


В процессе проектирования схем, требующих повышенной надёжности, часто встаёт задача реализации защиты устройства от подачи питания обратной полярности. Кроме того, в некоторых случаях подобное возможно при выходе из строя источника питания.

Существует несколько способов защиты схемы. Самая простая схема представляет собой последовательное включение диода Шоттки:

В данной схеме допустимо также использование обычного диода, однако следует учесть, что в этом случае на нём будет выделяться значительная мощность, кроме того, на обычном диоде падение напряжения при прямом включении может достигать 1.2В и более, что критично для низковольтных схем.

Однако, даже в случае использования диода Шоттки с низким падением напряжения, при большой мощности, проходящей через диод, на нём будут заметные потери мощности и он будет ощутимо греться.

Иногда параллельно устройству ставят диоды в обратном включении, которые должны сгореть если перепутать напряжение питания и привести к короткому замыканию. Устройство при этом, скорее всего, потерпит минимум повреждений, но может выйти из строя источник питания, кроме того и сам защитный диод придётся менять.

Есть простая схема, позволяющая избавиться от большинства вышеописанных недостатков. Схема на полевом транзисторе:

При переполюсовке питания ток в цепи течь не будет.

В случае работы в низковольтных цепях, стабилитрон Д1 не нужен. Данный двунаправленный стабилитрон служит для защиты затвора транзистора от пробоя, так как в основном МДП-транзисторы отличаются невысоким напряжением пробоя. Напряжение стабилизации стабилитрона Д1 подбирается исходя из напряжения пробоя затвора - оно не должно его превышать, но должно быть не ниже напряжения отсечки данной модели транзистора.

R зтв должен ограничить ток через стабилитрон и обеспечить плавное открытие транзистора. Так как мосфеты открываются напряжением, R зтв может быть достаточно большим, вплоть до сотен килоом, но следует помнить, что на слабых токах напряжение стабилизации может существенно отличаться от номинального.

Допустимо использование супрессора, в качестве Д1, но необходимо учитывать номинальные токи устройства (в случае использования однонаправленных защитных диодов катод подключается в цепь истока - обратное включение).

Интересный факт - аналогичная схема на мосфете используется в iPhone4, реализована она на микросхеме CSD68803W15 в которой, в качестве защиты затвора, используется именно TVS-диод.

n-канальный MOSFET + стабилитрон на 7.2...15V + резистор в пару десятков килоом = БЕЗОПАСНОСТЬ

Задачка-то, вроде, тривиальная. Да и зачем кому-либо вообще может понадобиться защищать какие-бы то ни было электронные изделия от переполюсовки источника питания?

Увы, у коварного случая найдётся тысяча и один способ подсунуть вместо плюса минус на устройство, которое ты много дней собирал и отлаживал, и оно вот только что заработало.

Приведу лишь несколько примеров потенциальных убийц электронных макеток, да и готовых изделий тоже:

  • Универсальные источники питания с их универсальными штеккерами, которые можно подключить как с плюсом на внутреннем контакте, так и с минусом.
  • Маленькие блоки питания (такие коробочки на сетевой вилке) - они ведь все выпускаются с плюсом на центральном контакте, разве нет? НЕТ!
  • Любой тип разъёма для подачи питания без жёсткого механического "ключа". К примеру удобные и дешёвые компьютерные "джамперы" с шагом 2.54мм. Или зажимы "под винт".
  • Как вам такой сценарий: позавчера под рукой были только чёрные и синие провода. Сегодня был уверен, что "минус" - это синий провод. Чпок - вот и ошибочка. Сначала-то хотел использовать чёрный и красный.
  • Да просто если уж день на задался - перепутать пару проводов, или воткнуть их наоборот просто потому, что плату держал кверхтормашками...

Всегда найдутся человеки (я знаком как минимум с двумя такими перцами), которые глядя прямо в глаза заявят жёстко и безапелляционно, что уж они то никогда не совершат такой глупости, как переполюсовка источника питания! Бог им судья. Может, после того, как сами соберут и отладят несколько оригинальных конструкций собственной разработки - поумнеют. А пока я спорить не буду. Просто расскажу, что использую сам.

Истории из жизни

Я ещё совсем молоденький был, когда пришлось мне перепаивать 25 корпусов из 27. Хорошо ещё это были старые добрые DIP микросхемы.
С тех самых пор я почти всегда ставлю защитный диодик рядом с разъёмом питания.

Кстати, тема защиты от неверной полярности питания актуальна не только на этапе макетирования.
Совсем недавно мне довелось стать свидетелем героических усилий, предпринимаемых моим другом по восстановлению гигантского лазерного резака. Причиной поломки был горе-техник, перепутавший провода питания сенсора/стабилизатора вертикального перемещения режущей головки. На удивление сама схемка, похоже, выжила (была-таки защищена диодом в параллель). Зато выгорело всё напрочь после: усилители, какая-то логика, контроль сервоприводов...

Это, пожалуй, самый простой и безопасный вариант защиты нагрузки от переполюсовки источника питания.
Одно только плохо: падение напряжения на диоде. В зависимости от того, какой диод применён, на нём может падать от примерно 0.2В (Шоттки) и до 0.7...1В - на обычных выпрямительных диодах с p-n переходом. Такие потери могут оказаться неприемлимыми в случае батарейного питания или стабилизированного источника питания. Так же, при относительно большых токах потребления, потери мощности на диоде могут быть весьма нежелательными.

При таком варианте защиты нету никаких потерь в нормальном режиме работы.
К сожалению, в случае переполюсовки источник питания рискует надорваться. А если источник питания окажется слишком силён - выгорит сначала диод, а за ним и вся защищаемая им схема.
В своей практике я иногда использовал такой вариант защиты от переполюсовки, особенно когда был уверен, что источник питания имеет защиту от перегрузки по току. Тем не менее однажды я заработал весьма чёткие отпечатки на обожженых пальцах коснувшись радиатора стабилизатора напряжения, который пытался бороться супротив толстенного диода Шоттки.

p-channel MOSFET - удачное, но дорогое решение

Это относительно простое решение практически лишено недостатков: ничтожное падение напряжения/мощности на проходном устройстве в нормальном режиме работы, и отсутствие тока в случае переполюсовки.
Единственная проблема: где добыть качественные недорогие мощные p-канальные полевые транзисторы с изолированным затвором? Если знаете - буду благодарен за информацию 😉
При прочих равных p-канальный MOSFET по какому-либо параметру всегда будет примерно в три раза хуже своих n-канальных собратьев. Обычно же хуже одновременно и цена, и что-либо на выбор: сопротивление открытого канала, максимальный ток, входная ёмкость и т.п. Объясняют такое явление примерно втрое меньшей подвижностью дырок, нежели электронов.

n-channel MOSFET - наилучшая защита

Раздобыть мощный низковольтный n-канальный КМОП транзистор в наши дни совсем несложно, ими порою можно разжиться даже совсем забесплатно (об этом - позже;). Так что обеспечить пренебрежимо малое падение на открытом канале для любых вообразимых токов нагрузки - пустяк.

N-канальный MOSFET + стабилитрон на 7.2...15V + резистор в пару десятков килоом = БЕЗОПАСНОСТЬ

Так же, как и в схеме с p-канальным MOSFET, при ошибочном подключении источника - и нагрузка и незадачливый источник вне опасности.

Единственный "недостаток", который дотошный читатель может углядеть в данной схеме защиты - это то, что защита включена в т.н. "земляной" провод.
Это действительно может быть неудобно, если строится большая система с земляной "звездой". Но в таком случае надо просто предусматривать эту же защиту в непосредственной близости от подвода питания. Если же и такой вариант не подходит - наверняка найдутся способы такую непростую систему либо обеспечить уникальными разъёмами питания с надёжными механическими ключами, либо развести "постоянку", или хотя бы "землю" без разъёмов.

Осторожно: статическое электричество!

Мы все много раз были предупреждены о том, что полевые транзисторы боятся статических разрядов. Это правда. Обычно затвор выдерживает 15...20 Вольт. Немного выше - и необратимое разрушение изолятора неизбежно. При этом бывают случаи, когда полевик вроде ещё работает, но параметры хуже, и прибор может отказать в любой момент.
К счастью (и к великому сожалению) мощные полевые транзисторы обладают большими емкостями затвор - остальной кристалл: от сотен пикофарад, до нескольких нанофарад и больше. Посему разряд человеческого тела часто выдерживают без проблем - ёмкость достаточно велика, чтобы стёкший заряд не вызвал опасного повышения напряжения. Так что при работе с мощными полевиками часто бывает достаточно соблюдать минимальную осторожность в смысле электростатики и всё будет хорошо 🙂

Я не одинок

То, что я описываю здесь, без сомнения, хорошо известная практика. Вот только если бы те разработчики военпрома имели привычку публиковать свои схемные решения в блогах...
Вот что мне попалось на просторах Сети:


> > I believe it is pretty well standard practice to use an N-channel
> > MOSFET in the return lead of military power supplies (28V input).
> > Drain to supply negative, source to the negative of the PSU and
> > the gate driven by a protected derivative of the positive supply.
1600 Гц, сидящие на одной плате, тоже защищены:

Удачных эксперементов!

Вам было интересно? Напишите мне!

Спрашивайте, предлагайте: в комментариях, или в личку. Спасибо!

Всего Вам доброго!

Сергей Патрушин.


При проектировании промышленных приборов, к которым предъявляются повышенные требования по надёжности, я не раз сталкивался с проблемой защиты устройства от неправильной полярности подключения питания. Даже опытные монтажники порой умудряются перепутать плюс с минусом. Наверно ещё более остро подобные проблемы стоят в ходе экспериментов начинающих электронщиков. В данной статье рассмотрим простейшие решения проблемы - как традиционные так и редко применяемые на практике методы защиты.

Простейшее решение, которое напрашивается с ходу - включение последовательно с прибором обычного полупроводникового диода.


Просто, дёшево и сердито, казалось бы чего ещё нужно для счастья? Однако, у такого способа есть очень серьёзный недостаток - большое напряжение падения на открытом диоде.


Вот типичная ВАХ для прямого включения диода. При токе в 2 Ампера напряжение падения составит примерно 0.85 вольт. В случае низковольтных цепей 5 вольт и ниже это очень существенная потеря. Для более высоковольтных такое падение играет меньшую роль, но есть ещё один неприятный фактор. В цепях с высоким током потребления на диоде будет рассеиваться весьма значительная мощность. Так для случая, изображённого на верхней картинке, получим:
0.85В х 2А = 1.7Вт.
Рассеиваемая на диоде мощность уже многовата для такого корпуса и он будет ощутимо греться!
Впрочем, если вы готовы расстаться с несколько большими деньгами, то можно применить диод Шоттки, который имеет меньшее напряжение падения.


Вот типичная ВАХ для диода Шоттки. Подсчитаем рассеиваемую мощность для этого случая.
0.55В х 2А = 1.1Вт
Уже несколько лучше. Но что же делать если ваше устройство потребляет ещё более серьёзный ток?
Иногда параллельно устройству ставят диоды в обратном включении, которые должны сгореть если перепутать напряжение питания и привести к короткому замыканию. Ваше устройство при этом скорее всего потерпит минимум повреждений, но может выйти из строя источник питания, не говоря уже о том, что сам защитный диод придётся заменить, а вместе с ним могут и дорожки на плате повредиться. Словом этот способ для экстрималов.
Однако, есть ещё один несколько более затратный, но весьма простой и лишённый перечисленных выше недостатков способ защиты - с помощью полевого транзистора. За последние 10 лет параметры этих полупроводниковых приборов резко улучшились, а цена наоборот сильно упала. Пожалуй то, что их крайне редко используют для защиты ответственных цепей от неправильной полярности подачи питания можно объяснить во многом инерцией мышления. Рассмотрим следующую схему:


При подаче питания напряжение на нагрузку проходит через защитный диод. Падение на нём достаточно велико - в нашем случае около вольта. Однако в результате между затвором и истоком транзистора образуется напряжение превышающее напряжение отсечки и транзистор открывается. Сопротивление исток-сток резко уменьшается и ток начинает течь уже не через диод, а через открытый транзистор.


Перейдём к конкретике. Например для транзистора FQP47З06 типичное сопротивление канала будет составлять 0.026 Ом! Нетрудно рассчитать что рассеиваемая при этом на транзисторе мощность для нашего случая будет всего 25 милливатт, а падение напряжение близко к нулю!
При смене полярности источника питания ток в цепи течь не будет. Из недостатков схемы можно пожалуй отметить разве то, что подобные транзисторы имеют не слишком большое пробивное напряжение между затвором и истоком, но слегка усложнив схему можно применить её для защиты более высоковольтных цепей.


Думаю читателям не составит труда самим разобраться как работает эта схема.

Уже после публикации статьи уважаемый пользователь в комментариях привел схему защиты на основе полевого транзистора, которая применяется в iPhone 4. Надеюсь он не будет возражать если я дополню свой пост его находкой.



Похожие публикации