Устройство плавного пуска: общие сведения, советы по выбору и особенности применения. Инструкция подключения и настройки! Устройство плавного пуска электродвигателя

Поскольку в последнее время очень широко распространилось применение асинхронного двигателя , в связи с его простотой, надежностью и небольшой ценой. Это стало причиной его широкого применения в промышленности. С целью улучшения его характеристик и продления срока работы, имеется большое число различных приспособлений, способных к регулировке, старту, либо защите движка. Вот об одном из них я и расскажу в этой статье.

Этим устройством является устройство плавного пуска электродвигателя (сокращенно УПП), иначе называемое софт-стартером, несмотря на то, что это название можно использовать к любым приспособлениям, способным выполнить плавный старт движка.

УПП асинхронных двигателей современного типа сменяет собой все прежние методы, вроде старта способом «переключение звезда-треугольник», либо пуска при помощи реостата. Необходимо иметь ввиду тот факт, что способ этот не дешев, следовательно, использование его должно быть оправдано. Само собой разумеется, что стоимость устройства сильно зависит от требуемой мощности, стартового функционала и защитных свойств и колеблется от 2 до 10 тысяч рублей, а иногда и более.

Принцип действия

Во время старта мотора, появляется немалый пусковой момент (вследствие необходимости преодоления нагрузочного момента на валу).

Для создания этого момента, двигатели забирают из сети большое количество энергии, что является одной из пусковых проблем – просадкой напряжения.

Этот фактор может плохо повлиять на других потребителей энергии, находящихся в этой сети. Еще одним неприятным фактором является возможность повреждение механических частей привода вследствие резкого пускового рывка.

Другую проблему при запуске создают немалые стартовые токи. Такие токи, при протекании по обмоткам мотора, выделяют очень много тепла, создавая опасность повреждения изоляции обмоток и выхода из строя двигателя в результате виткового замыкания.

Вот для избавления от всех подобных проявлений отрицательного характера во время старта двигателя и применяют УПП, позволяющее уменьшить токи старта, в результате чего значительно уменьшить просадки напряжения и, как следствие, нагрев обмоток.

Снижая стартовые токи, мы снижаем пусковой момент, в результате чего происходит смягчение ударов во время пуска и, как следствие, сохранение механических деталей привода. Весьма немалым плюсом УПП следует считать то, что при запуске нет рывков, а ускорение плавное.

По внешнему виду такое устройство представляет из себя прямоугольной формы модуль со средними размерами, имеющий контакты, к которым подключают мотор и цепи управления. Некоторые из таких устройств имеют ЖК-экран, индикаторы и кнопки, которые позволяют задавать разные пусковые режимы, выполнять съем показаний, ограничение тока и т.д. Кроме того, устройства оснащаются сетевым разъемом, при помощи которого выполняют его программирование и обмен данными.

Хотя эти устройства и именуются устройствами плавного пуска электродвигателя, но позволяют они выполнять не только старт, но и остановку движка. Помимо этого, в них имеется всевозможный защитный функционал, такой как, например, защита от КЗ, тепловая защита, контроль пропадания фаз, превышения токов пуска и изменения питающего напряжения. Помимо этого, в устройствах имеется память, в которую записываются возникающие ошибки. Следовательно, при помощи сетевого разъема, можно произвести их считывание и расшифровку.

Реализация плавного старта двигателей с использованием этих устройств происходит посредством медленного подъема напряжения (при этом мотор плавно разгоняется) и уменьшения токов запуска. Параметры, которые при этом подлежат регулировке, это, как правило, первичное напряжение, разгонное время и время остановки. Делать первичное напряжение слишком маленьким не выгодно, т.к. при этом значительно снижается момент пуска, по этой причине он устанавливается в пределах 0.3-0.6 от номинала.
При старте напряжение быстро поднимается до выставленного заранее напряжения старта, после чего, в течение установленного разгонного времени, медленно увеличивается до номинала. Движок в это время плавно, но быстро разгоняется до необходимой скорости.

Сейчас такие устройства изготавливают многие предприятия (в основном зарубежные). Функций у них много и их можно программировать. Однако, при всем этом, у них есть один большой минус – достаточно большая стоимость. Но есть возможность создания подобного устройства и своими руками, тогда оно будет стоить значительно дешевле.

Устройство плавного пуска электродвигателя своими руками

Приведу одну из возможных схем подобного устройства. Основой для построения такого устройства может стать регулятор мощности фазового типа, выполненный в виде микросхемы КР1182ПМ1. В этой схеме их установлено три (на каждую фазу свой). Схема представлена на рисунке ниже.

Данная схема предназначена для работы с двигателем 380в*50гц. Обмотки мотора соединены в «звезду» и подключены на выходные цепи схемы (они имеют обозначения L11, L2, L3). Общая точка обмоток движка цепляется на вывод сетевой нейтрали (N). Цепи выхода выполнены на встречно-параллельных парах тиристоров импортного производства, имеющих при малой цене достаточно высокие показатели.

Питание на схему приходит после того, как замкнется главный выключатель g1. Но, движок еще не запускается. Причина этому – обесточенные обмотки релюх к1-к3, вследствие чего, выводы 3 и 6 микросхем оказываются зашунтированными их нормально-закрытыми контактами (через сопротивления r1-r3). В результате этого, емкости с1-с3 не заряжаются, а микросхемы не вырабатывают импульсы управления.

Запуск схемы выполняется путем замыкания тумблера sa1. Это приводит к подаче напряжения 12 вольт на обмотки реле, что, в свою очередь, дает возможность заряда конденсаторов и, как следствие, увеличения угла открывания тиристоров. С помощью этого достигается плавный подъем напряжения обмоток двигателя. При достижении полного заряда конденсаторов, тиристоры откроются на наибольший угол, чем будет достигнута номинальная частота вращения движка.

Чтобы отключить двигатель, достаточно разомкнуть контакты sa1, что заставит отключиться релюхи и процесс пойдет в обратном направлении, обеспечив торможение двигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки - проблема?

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей , что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов : систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов - это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание - стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Видео: Плавный пуск, регулировка и защита колектор. двигателя

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже , чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций , таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя , после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов - хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель , который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

Устройство плавного пуска (УПП) — это устройство механического, электротехнического или электромеханического типа, которое необходимо для электродвигателей. Оно позволяет запустить либо остановить мотор без перегрузки (с большим моментом страгивания). Также УПП влияет на высоту пускового тока . Регулировка крутящего момента двигателя — основная особенность механизма. В данном случае оказывается меньшая нагрузка на мотор. Всё это позволяет уменьшить износ привода. Стандартный двигатель при пуске за
очень короткое время достигает высокого крутящего момента. Также изменения происходят по параметру пускового тока. Нагрузку на электрическую сеть можно оценить, подключив мощный двигатель с включенной лампой. При резком старте можно наблюдать повышение нагрузки в цепи, и лампа в этот момент не будет ярко светить. Для промышленного предприятия такие проблемы недопустимы. Стоит учитывать номинальное напряжение устройств. Единственным правильным решением считается контроль уровня пускового тока. Это достигается за счёт плавного увеличения напряжения на обмотках электродвигателя.

При подключенном устройстве плавного пуска обмотка не перегревается, и нет проблем с износом механической части привода. Также серьезной проблемой считается повреждение задвижек. При резком пуске или остановке данные элементы испытывают большие нагрузки за счёт гидравлических ударов. Сразу стоит сказать, что многое зависит от настройки УПП.

По конструкции различают:

  1. Механические устройства. (делаются с тумблером, который переключается вручную).
  2. Электронные УПП (делаются с контактором, который включает устройство автоматически при запуске мотора).
  3. Электромеханические модели (делаются с тумблером включения и контактором).

По принципу работы разделяет:

  1. Однофазные модели.
  2. Двухфазные устройства.
  3. Трехфазный тип.

Механические устройства работают в цепи переменного тока, и подходят для двигателей разной мощности . Устройства хорошо справляются с защитой привода от перегрузки, а также перегрева при значительном крутящем моменте. При правильной настройке УПП снижается риск износа в контактах вследствие влияния электромагнитных помех.

Электромеханические модели функционируют от полупроводниковой платы , неотъемлемой частью которой является байпасный контактор . В момент, когда мотор достигает своей номинальной мощности, представленный элемент напрямую может влиять на величину напряжения.

Электронные УПП являются наиболее распространенным. Современные модели способны быстро ограничивать ток. Без какого-либо перекоса по фазам УПП влияют на силу магнитного поля. Устройства могут функционировать с функцией обратной связи, а также без неё . Первый тип считается усовершенствованным за счёт возможности регулировки фазового сдвига. УПП с функцией обратной связи напрямую влияют на уровень тока в обмотках двигателя. Модели без этой опции работают в двухфазной и трехфазной цепи. В данном случае изменения токовые нагрузки происходит согласно заранее произведенным настройкам.

Примером однофазного УПП является модель SOFT-START AST2-30A ,
номинальная мощность которой составляет 15 кВт. Устройство имеет надежную систему защиты, и предельное напряжение равняется 480 Вольт. Рабочая частота заявлено на уровне 60 Гц. Устройство является довольно компактным и весит лишь 1,5 кг.

Примером двухфазного устройства плавного пуска электродвигателя является модель SOFT-START AST2-85A . Тут предусмотрена защита от пропадания входной фазы. Если говорить про показатели, то номинальный ток равняется 85 А, и устройство работает в сети с напряжением 480 Вольт. Номинальная мощность — 45 кВт, а частота не превышает 60 Гц. Наличие защиты от потери фазы двигателем — очередное преимущество. Если говорить про физические параметры, то длина оборудования равняется 330 мм при ширине 150 мм, а вес устройства — 55 кг.

Устройство

Стандартный УПП включает в себя следующие узлы:

  1. Тиристоры для регулировки напряжения.
  2. Блок печатных плат, необходимых для управления тиристорами.
  3. Радиаторы, обеспечивающие рассеивание тепла.
  4. Трансформатор тока для измерения основных показателей.
  5. Корпус устройства.

Выбор качественной модели

При подборе УПП стоит учитывать мощность двигателя , и обращать внимание на такой параметр, как номинальный ток . Сразу стоит сказать, что лидерами на рынке устройств плавного пуска считаются компаний 220 вольт и Сименс. В первую очередь рекомендуется рассмотреть модели с номинальным током от 3 до 29 ампер. Такие устройства подходят для двигателей мощностью от 3 кВт. У стандартной модели напряжение цепи управления (максимальное) составляет 415 Вольт. Специалисты рекомендуют обращать внимание на такие дополнительные параметры:

  1. Рассеиваемая мощность.
  2. Частота источника питания (предельная).
  3. Габариты.
  4. Минимальная рабочая температура.
  5. Ток дискретного выхода.
  6. Продолжительность работы.
  7. Отклонение частоты.

Модели низкой ценовой категории не подходят для конвейеров и мощных ленточных транспортеров. Чаще всего такие устройства выбираются для насосов и вентиляторов. Для компрессоров стоит подбирать устройство плавного пуска двигателя с надежной системой защиты. В этом плане хорошо показали себя модели компании 220 вольт. Если рассматривать модификации на 25 Ампер, то она хорошо подойдет для двигателя на 10 кВт.

Стандартное устройство может свободно работать в сети трехфазного переменного тока . Частота питающей сети стартует от 50 Гц. Важно уточнить информацию по току дискретного выхода, и не забывать про минимальную рабочую температуру. Если подбирать устройство Сименс, можно найти интересные варианты на 82 и 130 ампер. У моделей частота питающей сети составляет 50-60 Гц. Ток дискретного выхода при этом не превышает 2 ампер, а напряжение (максимальное) находится на уровне 40 В. Большинство моделей могут применяться в сети трехфазного переменного тока. Предельное напряжение источников питания составляет 300 и более вольт. Также стоит обратить внимание на конструктивные особенности УПП. У многих современных моделей используются внутренние реле байпаса. Лучше не рассматривать устройства, при установке которых требуется гальваническая развязка.

Особенности подключения оборудования

При проведении монтажных работ следует учесть, что поднимать УПП за соединительные шины строго настрого запрещается. Стандартная модель, как правило, устанавливается при помощи болтов М6 , а также дополнительных фиксаторов . Существуют модификации, для которых подбирается защитный корпус. В инструкции к товару всегда можно ознакомиться с физическими размерами оборудования.

Также в документации приводятся данные по фиксации защитного корпуса. Стоит учесть, что он не должен быть слишком мал, поскольку это приводит к перегреву тиристора. Выбор места установки — еще один важный аспект. Снизу и сверху оборудования должно быть достаточно места для циркуляции воздуха. Также следует исключить случаи попадания на устройство какой-либо жидкости либо пыли. Важно отметить, что полупроводники не способны заменить воздушную изоляцию. Таким образом, при монтаже применяется линейный контактор.

Все работы проводятся при отключенном напряжении. Модификации двухфазного типа подключаются последовательно по схеме. Отдельно стоит рассмотреть УПП с соединительным модулем. При монтаже таких устройств с кабелей снимается изоляция. На первом этапе они подсоединяется к клеммам. Далее кабели подводятся к электродвигателю.

Принцип работы устройств плавного пуска

Есть большое количество величин, влияющих на работу асинхронного электропривода. Для изменения переходных процессов используется коммутационная аппаратура . За счёт неё достигается изменение уровня сопротивления и затухание магнитного поля. У
некоторых моделей для этого предусмотрены специальные муфты либо блокираторы. Регулировка пропускаемого тока происходит благодаря полупроводниковым вентилям, которые управляются. Они считаются эффективным коммутирующим элементом. Благодаря тиристорам можно первоначально задавать необходимые условия работы. Так, можно менять показатели питающей системы напряжения.

Электрические двигатели получили широкое применение в любых сферах деятельности человека. Однако при запуске электродвигателя происходит семикратное потребление тока, вызывающее не только перегрузку сети питания, но и нагрев обмоток статора, а также выход из строя механических частей. Для устранения этого нежелательного эффекта радиолюбители советуют применять устройства плавного пуска электродвигателя.

Плавный пуск двигателя

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют активная и реактивная составляющие сопротивления (R). Значение реактивной составляющей зависит от частотных характеристик питания и во время запуска колеблется в пределах от 0 до расчетного значения (при работе инструмента). Кроме того, изменяется ток, называемый пусковым.

Ток пуска превышает в 7 раз значение номинального. При этом процессе происходит нагрев обмоток статорной катушки и, в том случае, если провод, из которого состоит обмотка, является старым, то возможно межвитковое КЗ (при уменьшении величины R ток достигает максимального значения). Перегрев влечет снижение срока эксплуатации инструмента. Для предотвращения этой проблемы существуют несколько вариантов использования устройств плавного пуска.

Переключением обмоток устройство плавного пуска двигателя (УПП) состоит из следующих основных узлов: 2 вида реле (управление временем включения и нагрузкой) , трех контакторов (рисунок 1).

Рисунок 1 - Общая схема устройства плавного пуска асинхронных двигателей (мягкого пуска).

На рисунке 1 изображен асинхронный двигатель. Его обмотки соединены по типу подключения «звезда». Запуск осуществляется при замкнутых контакторах K1 и K3. Через определенный временной интервал (задается при помощи реле времени) контактор К3 размыкает свой контакт (происходит отключение) и происходит включение контактом К2. Схема на рисунке 1 применима и для УПП двигателей различного типа.

Главным недостатком считается образование токов КЗ при одновременном включении 2-х автоматов. Эта проблема исправляется внедрением в схему вместо контакторов рубильника. Однако обмотки статора продолжают греться.

При электронном регулировании частоты пуска электромотора используется принцип частотного изменения питающего напряжения. Основным элементом этих преобразователей является преобразователь частоты, включающий в себя:

  1. Выпрямитель собирается на полупроводниковых мощных диодах (возможен вариант тиристорного исполнения). Он преобразует величину сетевого напряжения в пульсирующий постоянный ток.
  2. Промежуточная цепь сглаживает помехи и пульсации.
  3. Инвертор необходим для преобразования сигнала, полученного на выходе промежуточной цепи, в сигнал переменной амплитудной и частотной характеристиками.
  4. Электронная схема управления генерирует сигналы для всех узлов преобразователя.

Принцип действия, виды и выбор

Во время увеличения вращающего момента ротора и Iп в 7 раз для продления срока службы необходимо использовать УПП, которое отвечает следующим требованиям:

  1. Равномерное и плавное увеличение всех показателей.
  2. Управление электроторможением и пуском двигателя в определенные временные интервалы.
  3. Защита от скачков напряжения, пропадании какой-либо фазы (для 3-х фазного электродвигателя) и помех различного рода.
  4. Повышение износостойкости.

Принцип действия симисторного УПП: ограничение величины напряжения благодаря изменению угла открытия симисторных полупроводников (симисторов) при подключении к статорным катушкам электродвигателя (рисунок 2).

Рисунок 2 - Схема плавного пуска электродвигателя на симисторах.

Благодаря применению симисторов появляется возможность снизить пусковые токи в 2 и более раз, а наличие контактора позволяет избежать перегрева симисторов (на рисунке 2: Bypass). Основные недостатки симисторных УПП:

  1. Применение простых схем возможно только при небольших нагрузках или холостом запуске. В противном случае схема усложняется.
  2. Происходит перегрев обмоток и полупроводниковых приборов при продолжительном запуске.
  3. Двигатель иногда не запускается (приводит к значительному перегреву обмоток).
  4. При электротормозе электромотора возможен перегрев обмоток.

Широко применяются УПП с регуляторами, в которых отсутствует обратная связь (по 1 или 3 фазам). В моделях этого типа необходимо устанавливать время пуска электромотора и напряжение непосредственно перед началом пуска. Недостаток устройств - невозможность регулировать вращающий момент подвижных механических частей по нагрузке. Для устранения этой проблемы нужно применить устройство по снижению Iп, защиты от различной разности фаз (возникает во время перекоса фаз) и механических перегрузок.

Более дорогостоящие модели УПП включают в себя возможность слежения за параметрами работы электродвигателя в непрерывном режиме.

В устройствах, содержащих электромоторы, предусмотрены УПП на симисторах. Они отличаются схемой и способом регуляции сетевого напряжения. Простейшие схемы - схемы с однофазным регулированием. Они исполняются на одном симисторе и позволяют смягчить нагрузки на механическую часть, и применяются для электромоторов с мощностью менее 12 кВ. На предприятиях применяется 3-х фазное регулирование напряжения для электромоторов мощностью до 260 кВт. При выборе вида УПП необходимо руководствоваться следующими параметрами:

  1. Мощность устройства.
  2. Режим работы.
  3. Равенство Iп двигателя и УПП.
  4. Количество запусков за определенное время.

Для защиты насосов подходят УПП, защищающие от ударов с гидравлической составляющей трубы (Advanced Control). УПП для инструментов выбираются, исходя из нагрузок и больших оборотов. В дорогих моделях этот тип защиты в виде УПП присутствует, а для бюджетных необходимо изготавливать его своими руками. Применяется в химических лабораториях для плавного запуска вентилятора, охлаждающего жидкости.

Причины применения в болгарке

Благодаря особенностям конструкции при старте угловой шлифовальной машинки происходят высокие динамические нагрузки на детали инструмента. При начальном вращении диска, ось редуктора подвержена действию сил инерции:

  1. Инерционный рывок может вырвать болгарку из рук. Происходит угроза жизни и здоровью, так как этот инструмент очень опасен и требует строгого соблюдения техники безопасности.
  2. При запуске происходит перегрузка по току (Iпуска = 7*Iном). Происходит преждевременный износ щеток, перегрев обмоток.
  3. Изнашивается редуктор.
  4. Разрушение режущего диска.

Ненастроенный инструмент становится очень опасным, ведь существует вероятность причинения вреда здоровью и жизни. Поэтому необходимо его обезопасить. Для этого и собираются УПП для электроинструмента своими руками.

Создание своими руками

Для бюджетных моделей угловой шлифовальной машинки и другого инструмента необходимо собрать свое УПП. Сделать это несложно, ведь благодаря интернету, можно найти огромное количество схем. Наиболее простая и, в то же время, эффективная - универсальная схема УПП на симисторе и микросхеме.

При включении болгарки или другого инструмента происходит повреждение обмоток и редуктора инструмента, связанного с резким запуском. Радиолюбители нашли выход из этой ситуации и предложили простой плавный пуск для электроинструмента своими руками (схема 1), собранную в отдельном блоке (в корпусе очень мало места).

Схема 1 - Схема плавного пуска электроинструмента.

УПП своими руками реализуется на основе КР118ПМ1 (фазовое регулирование) и силовой части на симисторах. Основной изюминкой устройства является его универсальность, ведь его можно подключить к любому электроинструменту. Оно не только легко монтируется, но и не требует предварительной настройки. В основном подключение системы к инструменту не является сложным и устанавливается в разрыв кабеля питания.

Особенности работы модуля УПП

При включении болгарки на КР118ПМ1 подается напряжение и на управляющем конденсаторе (С2) происходит плавный рост напряжения по мере роста заряда. Тиристоры, находящиеся в микросхеме, открываются постепенно с определенной задержкой. Симистор открывается с паузой, равной задержке тиристоров. Для каждого последующего периода напряжения происходит постепенное уменьшение задержки и инструмент плавно запускается.

Зависит время набора оборотов от емкости С2 (при 47 мк время запуска равно 2 секунды). Эта задержка является оптимальной, хотя ее можно менять путем увеличения емкости С2. После выключения углошлифовальной машинки (УШМ) происходит разряд конденсатора С2 благодаря резистору R1 (время разрядки примерно равно 3 секунды при 68к).

Эту схему для регулировки оборотов электродвигателя можно модернизировать путем замены R1 на переменный резистор. При изменении величины сопротивления переменного резистора меняется мощность электромотора. Резистор R2 выполняет функцию контроля величины силы тока, который протекает через вход симистора VS1 (желательно предусмотреть охлаждение вентилятором), являющийся управляющим. Конденсаторы С1 и С3 служат для защиты и управлением микросхемы.

Симистор подбирается со следующими характеристиками: напряжение прямое максимальное до 400–500 В и минимальный ток пропускания через переходы должен быть не менее 25 А. При изготовлении УПП по этой схеме запас по мощности может колебаться от 2 кВт до 5 кВт.

Таким образом, для увеличения срока службы инструментов и двигателей, необходимо производить их плавный запуск. Это связано с конструктивной особенностью электромоторов асинхронного и коллекторного типов. При запуске происходит стремительное потребление тока, из-за которого происходит износ электрической и механической частей. Использование УПП позволяет обезопасить электроинструмент, благодаря соблюдению правил техники безопасности. При модернизации инструмента возможна покупка уже готовых моделей, а также сборка простого и надежного универсального устройства, которое не только отличается, но и даже превосходит некоторые заводские УПП.



Похожие публикации