Какие органы чувств у насекомых. Нервная система и органы чувств насекомых

Органы чувств у насекомых

Жданова Т. Д.

Соприкасаясь с разнообразной и энергичной деятельностью мира насекомых можно получить удивительные впечатления. Казалось бы, эти создания беспечно летают и плавают, бегают и ползают, жужжат и стрекочут, грызут и несут. Однако все это делается не бесцельно, а в основном с определенным намерением, согласно заложенной в их организм врожденной программе и приобретенному жизненному опыту. Для восприятия окружающего мира, ориентации в нем, осуществления всех целесообразных действий и жизненных процессов животные наделены очень сложными системами, в первую очередь нервной и сенсорной.

Что общего у нервной системы позвоночных и беспозвоночных?

Нервная система представляет из себя сложнейший комплекс структур и органов, состоящих из нервной ткани, где центральным отделом является мозг. Главной структурной и функциональной единицей нервной системы является нервная клетка с отростками (по-гречески нервная клетка - нейрон).

Нервная система и мозг насекомых обеспечивают: восприятие с помощью органов чувств внешнего и внутреннего раздражения (раздражимость, чувствительность); мгновенную переработку системой анализаторов поступающих сигналов, подготовку и осуществление адекватной ответной реакции; хранение в памяти в закодированном виде наследственной и приобретенной информации, а также мгновенное извлечение ее по мере необходимости; управление всеми органами и системами организма для его функционирования как единого целого, уравновешивания его со средой; осуществление психических процессов и высшей нервной деятельности, целесообразное поведение.

Организация нервной системы и мозга позвоночных и беспозвоночных животных настолько различна, что их сопоставление на первый взгляд представляется невозможным. И в тоже время для самых разнообразных видов нервной системы, принадлежащих, казалось бы, и совсем «простым» и «сложным» организмам, характерны одинаковые функции.

Совсем крошечный мозг мухи, пчелы, бабочки или другого насекомого позволяет ему видеть и слышать, осязать и чувствовать вкус, передвигаться с большой точностью, больше того - летать, пользуясь внутренней «картой» на значительные расстояния, осуществлять коммуникационное взаимодействие между собой и даже владеть своим «языком», обучаться и применять в нестандартных ситуациях логическое мышление. Так, мозг муравья гораздо меньше булавочной головки, но это насекомое издавна считали «мудрецом». При сравнении не только с его микроскопическим мозгом, но и с непостижимыми возможностями одной нервной клетки человеку стоит стыдиться своих самых современных компьютеров. А что об этом может сказать наука, например, нейробиология, изучающая процессы рождения, жизни и смерти мозга? Смогла ли она разгадать тайну жизнедеятельности мозга - этого самого сложного и таинственного из явлений, известных людям?

Первый нейробиологический опыт принадлежит древнеримскому врачу Галену. Перерезав у свиньи нервные волокна, с помощью которых мозг управлял мышцами гортани, он лишил животное голоса - оно тотчас онемело. Это было тысячелетие назад. Но далеко ли с тех пор ушла наука в своих познаниях о принципе работы мозга? Оказывается, несмотря на огромный труд ученых, принцип работы даже одной нервной клетки, так называемого «кирпичика», из которого построен мозг, человеку так и не известен. Нейробиологи многое понимают из того, как нейрон «ест» и «пьет»; как получает необходимую для своей жизнедеятельности энергию, переваривая в «биологических котлах» необходимые вещества, извлеченные из среды обитания; как затем этот нейрон посылает соседям самую различную информацию в виде сигналов, зашифрованную либо в определенной серии электрических импульсов, либо в разнообразных комбинациях химических веществ. А что потом? Вот получила нервная клетка конкретный сигнал, и в ее глубинах началась в содружестве с другими клетками, образующими мозг животного, уникальная деятельность. Идет запоминание пришедшей информации, извлечение из памяти нужных сведений, принятие решений, отдача приказов мышцам и различным органам и т.д. Как все происходит? Это ученым точно до сих пор не известно. Ну, а поскольку непонятно, как действуют отдельные нервные клетки и их комплексы, то не ясен и принцип работы целого мозга, даже такого маленького, как у насекомого.

Работа органов чувств и живых «приборов»

Жизнедеятельность насекомых сопровождается обработкой звуковой, обонятельной, зрительной и другой сенсорной информации - пространственной, геометрической, количественной. Одной из многих загадочных и интересных особенностей насекомых является их умение с помощью собственных «приборов» точно оценивать ситуацию. Наши знания об этих устройствах незначительны, хотя они широко используются в природе. Это и определители различных физических полей, которые позволяют предсказывать землетрясения, извержения вулканов, наводнения, изменения погоды. Это и чувство времени, отсчитываемое внутренними биологическими часами, и чувство скорости, и способность к ориентации и навигации и многое другое.

Свойство всякого организма (микроорганизмов, растений, грибов и животных) воспринимать раздражения, исходящие из внешней среды и от их собственных органов и тканей, называется чувствительностью. У насекомых, как и у других животных со специализированной нервной системой, существуют нервные клетки с высокой избирательной способностью к различным раздражителям - рецепторы. Они могут быть тактильными (реагирующими на прикосновения), температурными, световыми, химическими, вибрационными, мышечно-суставными и т.д. Благодаря своим рецепторам насекомые улавливают все разнообразие факторов внешней среды - различные вибрации (большой диапазон звуков, энергию излучения в форме света и тепла), механическое давление (например, силу тяжести) и другие факторы. Рецепторные клетки расположены в тканях либо одиночно, либо собраны в системы с образованием специализированных сенсорных органов - органов чувств.

Все насекомые прекрасно «понимают» показания своих органов чувств. Одни из них, как органы зрения, слуха, обоняния, относятся к дистанционным и способны воспринимать раздражение на расстоянии. Другие, как органы вкуса и осязания, являются контактными и реагируют на воздействие при непосредственном соприкосновении.

Насекомые в массе своей наделены превосходным зрением. Их сложно устроенные фасеточные глаза, к которым иногда добавляются и простые глазки, служат для распознания различных объектов. Некоторые насекомые обеспечены цветовым зрением, целесообразными приборами ночного видения. Интересно, что глаза насекомых - это единственный орган, подобие которого есть у других животных. В тоже время органы слуха, обоняния, вкуса и осязания такого подобия не имеют, но, тем не менее, насекомые прекрасно воспринимают запахи и звуки, ориентируются в пространстве, улавливают и излучают ультразвуковые волны. Тонкое обоняние и вкус позволяют им находить пищу. Разнообразные железы насекомых выделяют вещества для привлечения собратьев, половых партнеров, отпугивания соперников и врагов, а высокочувствительное обоняние способно улавливать запах этих веществ даже за несколько километров.

Многие в своих представлениях связывают органы чувств насекомых с головой. Но оказывается структуры, ответственные за сбор информации об окружающей среде, находятся у насекомых в самых различных частях тела. Они могут определять температуру предметов и пробовать пищу на вкус ногами, определять присутствие света спиной, слышать коленками, усами, хвостовыми придатками, волосками тела и т.д.

Органы чувств насекомых входят в состав сенсорных систем - анализаторов, пронизывающих сетью практически весь организма. Они получают множество различных внешних и внутренних сигналов от рецепторов своих органов чувств, анализируют их, формируют и передают «указания» различным органам для осуществления целесообразных действий. Органы чувств в основном составляют рецепторный отдел, который расположен на периферии (концах) анализаторов. А проводниковый отдел образован центральными нейронами и проводящими путями от рецепторов. В мозге есть определенные участки для обработки информации, поступающей от органов чувств. Они составляют центральную, «мозговую», часть анализатора. Благодаря такой сложной и целесообразной системе, к примеру зрительного анализатора, производится точный расчет и управление органами движения насекомого.

Накоплены обширные знания об удивительных возможностей сенсорных систем насекомых, однако объем книги позволяет привести лишь некоторые из них.

Органы зрения

Глаза и вся сложнейшая зрительная система - это удивительный дар, благодаря которому животные способны получать основную информацию об окружающем мире, быстро распознавать различные объекты и оценивать возникшую ситуацию. Зрение необходимо насекомым при поиске пищи, чтобы избегать хищников, исследовать объекты интереса или обстановку, взаимодействовать с другими особями при репродуктивном и общественном поведении и т.д.

Насекомые оснащены самыми разными глазами. Они могут быть сложными, простыми или добавочными глазками, а также личиночными. Наиболее сложные - фасеточные глаза, которые состоят из большого числа омматидиев, образующих на поверхности глаза шестигранные фасетки. Омматидий по своей сути - это крошечный зрительный аппарат, снабженный миниатюрной линзой, светопроводящей системой и светочувствительными элементами. Каждая фасетка воспринимает лишь небольшую часть предмета, а все вместе они обеспечивают мозаичное изображение предмета целиком. Фасеточные глаза, свойственные большинству взрослых насекомых, расположены по сторонам головы. У отдельных насекомых, например у стрекозы-охотницы, быстро реагирующей на передвижение добычи, глаза занимают половину головы. Каждый ее глаз построен из 28 000 фасеток. Для сравнения у бабочек их 17 000, у комнатной мухи - 4 000. Глазков на голове у насекомых может быть два или три на лбу или темечке, и реже - по ее сторонам. Личиночные глазки у жуков, бабочек, перепончатокрылых во взрослом состоянии заменяются на сложные.

Любопытно, что насекомые во время отдыха не могут закрывать глаза и поэтому спят с открытыми.

Именно глаза способствуют быстрой реакции насекомого-охотника, например богомола. Это, кстати, единственное насекомое, которое способно обернуться и посмотреть себе за спину. Крупные глаза обеспечивают богомолу бинокулярное зрение и позволяют точно рассчитать расстояния до объекта их внимания. Эта способность в сочетании с быстрым выбрасыванием передних ног в сторону добычи делают богомолов превосходными охотниками.

А у жуков вертячка желтоногая, бегающих по воде, глаза позволяют одновременно видеть добычу и на поверхности воды, и под нею. Для этого зрительные анализаторы жука обладают способностью вносить поправку на коэффициент преломления воды.

Восприятие и анализ зрительных раздражений осуществляется сложнейшей системой - зрительным анализатором. Для многих насекомых это один из основных анализаторов. Здесь первичной чувствительной клеткой является фоторецептор. А с ним связаны проводящие пути (зрительный нерв) и другие нервные клетки, расположенные на разных уровнях нервной системы. При восприятии световой информации последовательность событий такова. Полученные сигналы (кванты света) мгновенно кодируются в форме импульсов и передаются по проводящим путям в центральную нервную систему - в «мозговой» центр анализатора. Там эти сигналы тотчас декодируются (расшифровываются) в соответствующее зрительное восприятие. Для его распознания из памяти извлекаются эталоны зрительных образов и другие необходимые сведения. А далее поступает команда различным органам для адекватного ответного действия особи на изменение ситуации.

Где находятся «уши» насекомых?

Большинство животных и человек слышат ушами, где звуки вызывают вибрацию барабанной перепонки - сильную или слабую, медленную или быструю. Любые изменения вибраций сообщают организму информацию о природе слышимого звука. А чем слышат насекомые? Во многих случаях тоже своеобразными «ушами», но у насекомых они находятся на непривычных для нас местах: на усах - например, у самцов комаров, муравьев, бабочек; на хвостовых придатках - у американского таракана. Голенями передних ног слышат сверчки и кузнечики, а животом - саранча. Некоторые насекомые не имеют «ушей», то есть не обладают специальными органами слуха. Но они способны воспринимать различные колебания воздушной среды, в том числе звуковые колебания и ультразвуковые волны, недоступные для нашего уха. Чувствительными органами у таких насекомых выступают тонкие волоски либо мельчайшие чувствительные палочки. Они в большом количестве расположены на разных частях тела и связаны с нервными клетками. Так, у волосатых гусениц «ушами» являются волоски, а у голых - весь кожный покров тела.

Звуковую волну образует чередующееся разряжение и сгущение воздуха, распространяющееся во все стороны от источника звука - любого колеблющегося тела. Звуковые волны воспринимаются и обрабатываются слуховым анализатором - сложнейшей системой механических, рецепторных и нервных структур. Эти колебания преобразуются слуховыми рецепторами в нервные импульсы, которые передаются по слуховому нерву в центральную часть анализатора. В результате происходит восприятие звука и анализ его силы, высоты и характера.

Слуховая система насекомых обеспечивает их избирательное реагирование на относительно высокочастотные вибрации - они воспринимают малейшие сотрясения поверхности, воздуха или воды. Например, жужжащие насекомые вызывают звуковые волны за счет быстрых взмахов крыльев. Такую вибрацию воздушной среды, например писк комаров, самцы воспринимают своими чувствительными органами, расположенными на усиках. Таким образом они улавливают воздушные волны, которые сопровождают полет других комаров и адекватно реагируют на полученную звуковую информацию. Слуховые системы насекомых «настроены» на восприятие относительно слабых звуков, поэтому громкие звуки оказывают на них отрицательное влияние. Например, шмели, пчелы, мухи некоторых видов не могут при их звучании подняться в воздух.

Разнообразные, но строго определенные сигнальные звуки, которые издают самцы сверчков каждого вида, играют важную роль в их репродуктивном поведении - при ухаживании и привлечении самок. Сверчок обеспечен замечательным инструментом для общения с подругой. При создании нежной трели, он потирает острой стороной одного надкрылья о поверхность другого. А для восприятия звука у самца и самки существует особо чувствительная тонкая кутикулярная мембрана, которая играет роль барабанной перепонки. Был проделан интересный опыт, когда стрекочущего самца сажали перед микрофоном, а в другой комнате у телефона помещали самку. При включении микрофона самка, заслышав видотипичное стрекотание самца, устремлялась к источнику звука - телефону.

Органы для улавливания и излучения ультразвуковых волн

Ночные бабочки обеспечены устройством для обнаружения летучих мышей, которые для ориентации и охоты используют УЗ волны. Хищники воспринимают сигналы с частотой до 100 000 герц, а ночные бабочки и златоглазки, за которыми они охотятся, - до 240 000 герц. В груди, например, бабочки совки расположены специальные органы для акустического анализа ультразвуковых сигналов. Они позволяют улавливать УЗ импульсы охотящихся кожанов на расстоянии до 30 м. Когда бабочка воспринимает сигнал от локатора хищника, включаются защитные поведенческие действия. Услышав ультразвуковые крики ночной мыши на сравнительно большом расстоянии, бабочка резко меняет направление полета, применяя обманный маневр - «ныряние». При этом она начинает выделывать фигуры высшего пилотажа - спирали и «мертвые петли», чтобы уйти от погони. А если хищник оказывается на расстоянии менее 6 м, бабочка складывает крылья и падает на землю. И летучая мышь не обнаруживает неподвижное насекомое.

Но, взаимоотношения между ночными бабочками и летучими мышами, как недавно установлено, оказались еще более сложными. Так, бабочки некоторых видов, обнаружив сигналы летучей мыши, сами начинают издавать УЗ импульсы в виде щелчков. Причем, эти импульсы так действуют на хищника, что он, как бы пугаясь, улетает прочь. На счет того, что заставляет летучих мышей прекратить преследование бабочки и «бежать с поля боя», существуют лишь предположения. Вероятно, ультразвуковые щелчки - это приспособительные сигналы насекомых, сходные с теми, которые посылает сама летучая мышь, только гораздо сильнее. Ожидая услышать слабый отраженный звук от собственного сигнала, преследователь слышит оглушающий грохот - словно сверхзвуковой самолет пробивает звуковой барьер.

Напрашивается вопрос, почему летучую мышь оглушают не собственные УЗ сигналы, а бабочки. Оказывается, летучая мышь хорошо защищена от собственного крика-импульса, посылаемого локатором. Иначе такой мощный импульс, который в 2 000 раз сильнее принимаемых отраженных звуков, может мышь оглушить. Чтобы это не произошло, ее организм изготавливает и целенаправленно применяет особое стремечко. Перед отправлением ультразвукового импульса специальная мышца оттягивает стремечко от окна улитки внутреннего уха - колебания механически прерываются. По существу, стремечко тоже делает щелчок, но не звуковой, а антизвуковой. После крика-сигнала оно тотчас возвращается на место, чтобы ухо было готово принять отраженный сигнал. Трудно представить, с какой скоростью может действовать мышца, выключающая слух мыши в момент посылаемого крика-импульса. Во время преследования добычи - это 200-250 импульсов в секунду!

А опасные для летучей мыши сигналы-щелчки бабочки раздаются точно в тот момент, когда охотник включает ухо для восприятия своего эха. Значит, чтобы заставить оглушенного хищника испуганно улететь прочь, ночная бабочка посылает сигналы, которые предельно подобраны к его локатору. Для этого организм насекомого запрограммирован на прием частоты импульса приближающегося охотника и точно в унисон с ним посылает ответный сигнал.

Такие взаимоотношения между ночными бабочками и летучими мышами вызывают много вопросов. Каким образом у насекомых появилась способность воспринимать ультразвуковые сигналы летучих мышей и мгновенно понимать опасность, которую они в себе несут? Как могло у бабочек постепенно образоваться в процессе отбора и совершенствования ультразвуковое устройство с идеально подобранными защитными характеристиками? С восприятием ультразвуковых сигналов летучих мышей тоже разобраться не просто. Дело в том, что они узнают свое эхо среди миллионов голосов и других звуков. И никакие крики-сигналы соплеменников, никакие УЗ сигналы, издаваемые с помощью аппаратуры, не мешают охотиться рукокрылым. Только сигналы бабочки, даже искусственно воспроизведенные, заставляют мышь улететь прочь.

Живые существа преподносят новые и новые загадки, вызывая восхищение совершенством и целесообразностью строения своего организма.

Богомолу, так же, как и бабочке, наряду с прекрасным зрением даны и особые органы слуха для избежания встречи с летучими мышами. Эти органы слуха, воспринимающие ультразвук, расположенные на груди между ногами. А для некоторых видов богомолов кроме ультразвукового органа слуха характерно наличие второго уха, которое воспринимает гораздо более низкие частоты. Функция его пока не известна.

Химическое чувство

Животные наделены общей химической чувствительностью, которую обеспечивают различные сенсорные органы. У химического чувства насекомых наиболее значительную роль играет обоняние. А термитам и муравьям, по мнению ученых, дано объемное обоняние. Что это такое - нам трудно себе представить. Органы обоняния насекомого реагируют на присутствие даже очень малых концентраций вещества, порой весьма удаленного от источника. Благодаря обонянию, насекомое находит добычу и пищу, ориентируется на местности, узнает о приближении врага, осуществляет биокоммуникацию, где специфическим «языком» служит обмен химической информацией с помощью феромонов.

Феромоны являются сложнейшими соединениями, выделяемыми для коммуникационных целей одними особями с целью передачи информации другим особям. Такая информация закодирована в конкретных химических веществах, зависящих от вида живого существа и даже от его принадлежности определенной семье. Восприятие с помощью системы обоняния и расшифровка «послания» вызывает у получателей определенную форму поведения или физиологический процесс. К настоящему времени известна значительная группа феромонов насекомых. Одни из них предназначены для привлечения особей противоположного пола, другие, следовые - указывают путь к дому или пищевому источнику, третьи - служат сигналом тревоги, четвертые - регулируют определенные физиологические процессы и т.д.

Поистине уникальным должно быть «химическое производство» в организме насекомых, чтобы выпускать в нужном количестве и в определенный момент всю гамму необходимых им феромонов. Сегодня известно более сотни этих веществ сложнейшего химического состава, но искусственно воспроизвести их удалось не более десятка. Ведь для их получения требуются совершенные технологии и оборудование, так что пока остается только удивляться такому обустройству организма этих миниатюрных беспозвоночных существ.

Жуки обеспечены главным образом усиками обонятельного типа. Они позволяют улавливать не только сам запах вещества и направление его распространения, но даже «ощутить» форму пахучего предмета. Примером великолепного обоняния могут служить жуки-могильщики, занимающиеся очисткой земли от падали. Они способны почувствовать запах за сотни метров от нее и собраться большой группой. А божья коровка с помощью обоняния находит колонии тлей, чтобы оставить там кладку. Ведь тлями питается не только она сама, но и ее личинки.

Не только взрослые насекомые, но и их личинки часто наделены отличным обонянием. Так, личинки майского жука способны двигаться к корням растений (сосны, пшеницы), ориентируясь по едва повышенной концентрации углекислого газа. В экспериментах личинки сразу же направляются к участку почвы, куда ввели небольшое количество вещества, образующее углекислый газ.

Непостижимой кажется чувствительность органа обоняния, например, бабочки сатурнии, самец которой способен улавливать запах самки своего вида на расстоянии 12 км. При сопоставлении этого расстояния с количеством выделяемого самкой феромона, получился удививший ученых результат. Благодаря своим усикам самец безошибочно отыскивает среди многих пахучих веществ одну-единственную молекулу наследственно известного ему вещества в 1 м3 воздуха!

Некоторым перепончатокрылым дано настолько острое обоняние, что оно не уступает известному чутью собаки. Так, самки наездников, когда бегают по стволу дерева или пню, усиленно шевелят усиками. Ими они «вынюхивают» личинок рогохвоста или жука-дровосека, находящихся в древесине на расстоянии 2-2,5 см от поверхности.

Благодаря уникальной чувствительности усиков крошечный наездник гелис одним только их прикосновением к коконам пауков определяет, что в них находится - недоразвитые ли яички, уже вышедшие из них малоподвижные паучки или яички других наездников своего вида. Каким образом гелис делает такой точный анализ, пока не известно. Вероятнее всего, он ощущает тончайший специфический запах, но может быть, при постукивании усиками наездник улавливает какой-либо отраженный звук.

Восприятие и анализ химических раздражителей, действующих на органы обоняния насекомых, осуществляет многофункциональная система - обонятельный анализатор. Он, как и все другие анализаторы состоит из воспринимающего, проводникового и центрального отделов. Обонятельные рецепторы (хеморецепторы) воспринимают молекулы пахучих веществ, и импульсы, сигнализирующие об определенном запахе, направляются по нервным волокнам к мозгу для анализа. Там происходит мгновенная выработка ответной реакции организма.

Говоря об обонянии насекомых, нельзя не сказать о запахе. В науке пока нет четкого понимания того, что такое запах, и относительно этого природного феномена существует множество теорий. Согласно одной из них анализируемые молекулы вещества представляют собой «ключ». А «замком» являются рецепторы органов обоняния, включенные в анализаторы запаха. Если конфигурация молекулы подойдет к «замку» определенного рецептора, то анализатор получит от него сигнал, расшифрует его и передаст информацию о запахе в мозг животного. Согласно другой теории запах определяется химическими свойствами молекул и распределением электрических зарядов. Наиболее новая теория, завоевавшая много сторонников, главную причину запаха видит в вибрационных свойствах молекул и их составляющих. Любой аромат связан с определенными частотами (волновыми числами) инфракрасного диапазона. Например, тиоспирт лукового супа и декаборан химически совершенно различны. Но они имеют одну и ту же частоту и одинаковый запах. В то же время существуют химически подобные вещества, которые характеризуются разными частотами и пахнут по-разному. Если эта теория верна, то и ароматные вещества и тысячи видов клеток, воспринимающих запах, можно оценивать по инфракрасным частотам.

«Радиолокационная установка» насекомых

Насекомые наделены прекрасными органами обоняния и осязания - антеннами (усиками или сяжками). Они очень подвижны и легко управляемы: насекомое может разводить их, сближать, вращать каждый в отдельности на своей оси или вместе на общей. В этом случае они и внешне напоминают и по своей сути являются «радиолокационной установкой». Нервно-чувствительным элементом антенн являются сенсиллы. От них импульс со скоростью 5м в секунду передается в «мозговой» центр анализатора для распознания объекта раздражения. И далее сигнал реагирования на полученную информацию мгновенно поступает к мышце или другому органу.

У большинства насекомых на втором членике усика находится джонстонов орган - универсальное устройство, назначение которого еще полностью не выяснено. Как считают, оно воспринимает движения и сотрясения воздуха и воды, контакты с твердыми объектами. Удивительно высокой чувствительностью к механическим колебаниям наделены саранча и кузнечик, которые способны зарегистрировать любые сотрясения с амплитудой, равной половине диаметра атома водорода!

У жуков на втором членике усика тоже имеется джонстонов орган. И если у жука-вертячки, бегающего по поверхности воды, его повредить или удалить, то он станет натыкаться на любые препятствия. При помощи этого органа жук способен улавливать отраженные волны, идущие от берега или препятствия. Он ощущает водяные волны высотой 0. 000 000 004 мм, то есть джонстонов орган выполняет задачу эхолота или радиолокатора.

Муравьи отличаются не только хорошо организованным мозгом, но и столь же совершенной телесной организацией. Важнейшее значение для этих насекомых имеют усики, некоторые служат прекрасным органом обоняния, осязания, познания окружающей среды, взаимных объяснений. Лишенные усиков муравьи теряют способность отыскивать дорогу, находящуюся поблизости пищу, отличать врагов от друзей. С помощью антенн насекомые способны «разговаривать» между собой. Муравьи передают важную информацию, прикасаясь антеннами к определенным членикам усиков друг друга. В одном из поведенческих эпизодов два муравья нашли добычу в виде личинок разных размеров. После «переговоров» с собратьями при помощи антенн, они направились к месту находки вместе с мобилизованными помощниками. При этом более удачливый муравей, сумевший с помощью усиков передать информацию о более крупной найденной им добыче, мобилизовал за собой гораздо большую группу рабочих муравьев.

Интересно, что муравьи - одни из самых чистоплотных созданий. После каждой еды и сна все их тело и особенно усики подвергаются тщательной очистке.

Вкусовые ощущения

Человек четко определяет запах и вкус вещества, а у насекомых вкусовое и обонятельное ощущения зачастую не разделяются. Они выступают как единое химическое чувство (восприятие).

Насекомые, обладающие вкусовыми ощущениями, оказывают предпочтение тем или иным веществам в зависимости от питания, характерного для данного вида. При этом они способны различать сладкое, соленое, горькое и кислое. Для соприкосновения с потребляемой пищей органы вкуса могут быть расположены на различных участках тела насекомых - на антеннах, хоботке и на ногах. С их помощью насекомые получают основную химическую информацию об окружающей среде. Например, муха, лишь прикоснувшись лапками к заинтересовавшему ее объекту, практически сразу узнает, что у нее под ногами - питье, пища или что-то несъедобное. То есть она ногами способна осуществлять мгновенный контактный анализ химического вещества.

Вкус - это ощущения, возникающее при воздействии раствора химических веществ на рецепторы (хеморецепторы) органа вкуса насекомого. Рецепторные вкусовые клетки являются периферической частью сложной системы вкусового анализатора. Они воспринимают химические раздражения, и здесь происходит первичное кодирование вкусовых сигналов. Анализаторы тотчас передают залпы хемоэлектрических импульсов по тонким нервным волокнам в свой «мозговой» центр. Каждый такой импульс длится менее тысячной доли секунды. А затем центральные структуры анализатора мгновенно определяют вкусовые ощущения.

Продолжаются попытки разобраться не только в вопросе, что такое запах, но и создать единую теорию «сладости». Пока это не удается - может быть это удастся вам, биологи ХХ1 века. Проблема в том, что создавать относительно одинаковые вкусовые ощущения сладости могут совершенно различные химические вещества - как органические, так и неорганические.

Органы осязания

Изучение осязания насекомых представляет собой едва ли не наибольшую сложность. Каким образом осязают мир эти закованные в хитиновый панцирь существа? Так, благодаря рецепторам кожи мы способны воспринимать различные осязательные ощущения - одни рецепторы регистрируют давление, другие температуру и т.п. Потрогав предмет, можно сделать вывод, что он холодный или теплый, твердый или мягкий, гладкий или шероховатый. У насекомых тоже существуют анализаторы, определяющие температуру, давление и т.п., но многое в механизмах их действия остается неизвестным.

Осязание является одним из наиболее важных органов чувств для безопасности полета многих летающих насекомых, чтобы ощущать воздушные потоки. Например, у двукрылых все тело покрыто сенсиллами, выполняющими осязательные функции. Особенно их много на жужжальцах, чтобы воспринимать давление воздуха и стабилизировать полет.

Благодаря осязанию муху не так легко прихлопнуть. Ее зрение позволяет заметить угрожающий объект только на расстоянии 40 - 70 см. Зато муха способна отреагировать на опасное движение руки, вызвавшее даже малое перемещение воздуха, и мгновенно взлететь. Эта обычная комнатная муха еще раз подтверждает, что в мире живого нет ничего простого - все существа от мала до велика обеспечены прекрасными сенсорными системами для активной жизнедеятельности и собственной защиты.

Рецепторы насекомых, регистрирующих давление, могут быть в виде пупырышек и щетинок. Они используются насекомыми для разных целей, в том числе для ориентации в пространстве - по направлению силы тяжести. Например, личинка мухи перед окукливанием всегда четко движется вверх, то есть против силы тяжести. Ведь ей нужно выползти из жидкой пищевой массы, а там нет никаких ориентиров, кроме притяжения Земли. Даже выбравшись из куколки, муха еще некоторое время стремится ползти вверх, пока не обсохнет, чтобы осуществить полет.

У многих насекомых хорошо развито чувство гравитации. Например, муравьи способны оценить наклон поверхности в 20. А жук-стафилин, который роет вертикальные норы, может определить отклонение от вертикали в 10.

Живые «синоптики»

Многие насекомые наделены прекрасной способностью предчувствовать погодные изменения и делать долгосрочные прогнозы. Впрочем, это характерно для всего живого - будь то растение, микроорганизм, беспозвоночное или позвоночное животное. Такие способности обеспечивают нормальную жизнедеятельность в предназначенной им среде обитания. Бывают и редко наблюдаемые природные явления - засухи, наводнения, резкие похолодания. И тогда, чтобы выжить, живым существам необходимо заранее мобилизовать дополнительные защитные средства. И в том и в другом случае они используют свои внутриорганизменные «метеорологические станции».

Постоянно и внимательно наблюдая за поведением различных живых существ, можно узнавать не только об изменениях погоды, но и даже о предстоящих природных катаклизмах. Ведь свыше 600 видов животных и 400 видов растений, пока известных ученым, могут выполнять своеобразную роль барометров, индикаторов влажности и температуры, предсказателей как гроз, бурь, смерчей, наводнений, так и прекрасной безоблачной погоды. Причем живые «синоптики» есть везде, где бы вы ни находились - у водоема, на лугу, в лесу. Например, перед дождем еще при ясном небе, перестают стрекотать зеленые кузнечики, муравьи начинают плотно закрывать входы в муравейник, а пчелы прекращают полеты за нектаром, сидят в улье и гудят. Стремясь спрятаться от надвигающейся непогоды, мухи и осы залетают в окна домов.

Наблюдения за ядовитыми муравьями, обитающими в предгорьях Тибета, выявили их прекрасные способности делать более дальние прогнозы. Перед началом периода сильных дождей муравьи переселяются на другое место с сухим твердым грунтом, а перед наступлением засухи муравьи заполняют темные влажные впадины. Крылатые муравьи способны за 2 -3 дня ощутить приближение бури. Крупные особи начинают метаться по земле, а мелкие роятся на небольшой высоте. И чем эти процессы активнее, тем сильнее ожидается непогода. Выявлено, что за год муравьи правильно определили 22 изменения погоды, а ошиблись только в двух случаях. Это составило 9%, что выглядит совсем неплохо по сравнению со средней ошибкой метеостанций в 20 %.

Целесообразные действия насекомых зачастую зависят от долгосрочных прогнозов, и это может оказывать людям большую услугу. Опытного пасечника достаточно надежным прогнозом обеспечивают пчелы. На зиму они заделывают леток в улье воском. По отверстию для проветривания улья можно судить о предстоящей зиме. Если пчелы оставят большое отверстие - зима будет теплой, а если маленькое - жди суровых морозов. Также известно, что если пчелы начинают рано вылетать из ульев, можно ожидать ранней теплой весны. Те же муравьи, если зима не ожидается суровой, остаются жить вблизи поверхности почвы, а перед холодной зимой располагаются глубже в земле и строят более высокий муравейник.

Кроме макроклимата для насекомых важен и микроклимат среды их обитания. Например, пчелы не допускают перегрева в ульях и, получив сигнал от своих живых «приборов» о превышении температуры, приступают к вентиляции помещения. Часть рабочих пчел организованно располагается на разной высоте по всему улью и быстрыми взмахами крыльев приводит в движение воздух. Образуется сильный воздушный поток, и улей охлаждается. Вентиляция - процесс длительный, и когда одна партия пчел утомляется, наступает очередь другой, причем в строгом порядке.

Поведение не только взрослых насекомых, но и их личинок зависит от показаний живых «приборов». К примеру, личинки цикад, развивающиеся в земле, выходят на поверхность только при хорошей погоде. Но как узнать, какая погода наверху? Для определения этого над своими подземными убежищами они создают специальные земляные конусы с крупными отверстиями - своего рода метеорологические сооружения. В них цикады через тонкий слой почвы оценивают температуру и влажность. И если погодные условия неблагоприятны, личинки возвращаются в норку.

Феномен прогнозирования ливней и наводнений

Наблюдения за поведением термитов и муравьев в критических ситуациях могут помочь людям в прогнозировании сильных ливней и наводнений. Один из естествоиспытателей описал случай, когда пред наводнением индейское племя, проживающее в джунглях Бразилии, в спешном порядке покинуло свое поселение. А о приближающейся беде индейцам «поведали» муравьи. Перед наводнением эти общественные насекомые приходят в сильное волнение и срочно покидают вместе с куколками и запасами продовольствия обжитое место. Они направляются в те места, куда вода не дойдет. Местное население вряд ли понимало истоки такой удивительной чувствительности муравьев, но, покоряясь их знаниям, люди уходили от беды вслед за маленькими синоптиками.

Прекрасно умеют прогнозировать наводнение и термиты. Перед его началом они всей колонией покидают свои дома и устремляются к ближайшим деревьям. Предвидя размах бедствия, они поднимаются именно на ту высоту, которая будет выше ожидаемого наводнения. Там они пережидают, пока пойдут на убыль мутные потоки воды, которые мчат с такой скоростью, что деревья порой валятся под их напором.

Огромное количество метеостанций ведет наблюдение за погодой. Они расположены на суше, в том числе в горах, на специально оборудованных научных судах, спутниках и космических станциях. Метеорологи оснащены современными приборами, аппаратами и компьютерной техникой. Фактически они делают не прогноз погоды, а расчет, вычисление погодных изменений. А насекомые в приведенных примерах действительного прогнозируют погоду, используя врожденные способности, и встроенные в их организм специальные живые «приборы». Причем муравьи-синоптики определяют не только время приближения наводнения, но и оценивают его размах. Ведь для нового прибежища они занимали только безопасные места. Ученые пока так и не сумели объяснить этот феномен. Еще большую загадку преподнесли термиты. Дело в том, что они никогда не располагались на тех деревьях, которые при наводнении оказывались снесенными бурными потоками. Подобным образом, по наблюдению этологов, вели себя и скворцы, которые весной не занимали опасные для поселения скворечники. В последствии те были действительно сорваны ураганным ветром. Но здесь речь идет об относительно крупном животном. Птица, возможно, по качанию скворечника или по другим признакам оценивает ненадежность его крепления. Но каким образом и с помощью каких устройств подобные прогнозы могут делать совсем маленькие, но очень «мудрые» животные? Человек пока не только не в силах создать что-либо подобное, но и не может ответить не может. Эти задачи - будущим биологам!


Основу органов чувств составляют, так называемые, нервно- чувствительные образования - сенсиллы, имеющие вид волосков, щетинок, углублений.

У насекомых есть следующие органы чувств:

1) Органы механического чувства. К ним относятся осязательные сенсиллы, разбросанные по всему телу. Они воспринимают сотрясение воздуха, ощущают положение тела в пространстве и др. К органам механического чувства относят также органы слуха, поскольку они воспринимают звук, являющийся, как известно, колебаниями воздуха. Органы слуха есть преимущественно у, насекомых, способных издавать звуки. Размещаются по бокам брюшка, на крыльях, передних голенях и в некоторых других местах.

2) Органы химического чувства представлены сенсиллами хеморецепторов и служат для восприятия химизма среды, т.е. запахов и вкусовых ощущений. Располагаются на ротовых конечностях, усиках, иногда (у пчел) на ногах. Химическое чувство - обоняние играет важнейшую роль во внутри- и межпопуляционных отношениях насекомых. Органы; зрения представлены сложными (фасеточными) и простыми глазами. Сам глаз состоит из множества сенсилл. Поверхностная шестигранная часть называется фасеткой. Фасетки образуют роговицу, являющуюся прозрачной кутикулой.

Чувствующие нейроны

Тела чувствующих, или сенсорных, клеток обычно биполярной или мультиполярной формы лежат всегда вблизи чувствующего органа или иннервируемой ткани. Дендриты одних нейронов, чаще всего биполярных, связаны с кутикулярными образованиями, других, всегда мультиполярных, - с тканями полости тела или же они образуют субэпидермальную сеть, как у личинок с мягкой кожей.

Соответственно различают две большие категории чувствующих клеток. Клетки первого типа отличаются тем, что практически всегда связаны с кутикулой или ее впячиваниями: аподемами, трахеями, выстилкой предротовой и ротовой полостей и т. п. К ним принадлежат разнообразные экстерорецепторные клетки, в том числе и зрительные, хотя их дендриты выражены неясно. Клетки второго типа никогда не связаны с кутикулой и лежат только на внутренней поверхности тела, стенках пищеварительного тракта, в мышечной и соединительной тканях. Электрофизиологически показано, что они принадлежат интеро или проприоцепторам.

Аксоны чувствующих клеток идут непосредственно в соответствующие ганглии ЦНС, иногда находящиеся непосредственно в головном мозгу, например оптические или обонятельные центры. Вопрос о каналах связи рецепторных клеток с нервным центром чрезвычайно важен для правильной интерпретации работы анализатора и механизма управления поведением насекомого. Теперь, по-видимому, все признают несостоятельным прежнее мнение о том, что в некоторых рецепторных системах, например в антеннах клопа Rhodnius, имеет место срастание аксонов нескольких чувствующих клеток в единое волокно. Но замыкание группы рецепторов на один периферический нейрон второго порядка, т. е. потеря "адреса" входного сигнала, характерно для первого оптического ганглия насекомых. Смысл такого способа связи с центром, ведущего к частичной потере информации от совокупности датчиков, пока не всегда ясен (см. ниже).

Нервная ткань, в том числе и сенсорные клетки, происходят из эктодермы. Их принадлежность покрову тела выражается и в том, что связь чувствующего органа с ЦНС устанавливается центростремительно. Так, В. Вигглесворс показал на клопе Rhodnius, что перерезанный афферентный нерв регенерирует в направлении к ЦНС. Точно так же во время каждой линьки, когда образуются дополнительные рецепторы, чтобы обслуживать увеличивающуюся поверхность тела, их чувствующие клетки посылают аксоны центростремительно.

Выявленный на гистологических препаратах факт центростремительного развития аксона может стать одним из оснований для важного заключения о том, что путь от чувствующей клетки до ЦНС прямой, без синаптического переключения. Вблизи рецепторных клеток и афферентных нервов встречаются другие, например, нейроглиальные (питающие) клетки, но они не имеют отношения к передаче рецепторного сигнала.

Органы чувств у насекомых дифференцированы и хорошо развиты. Преобладают по своему значению органы осязания и обоняния. Органы осязания наружно представлены щетинкой. Органы обоняния также обладают формой типичной щетинки, которая, видоизменяясь, может превращаться в отчлененные тонкостенные выступы и неотчлененные пальцевидные выступы и тонкостенные плоские участки покрова. Важнейшим местонахождением окончаний обонятельных нервов служат усики.

Например, роль усиков как органов обоняния у мух и чешуекрылых, которые на огромном расстоянии различают даже слабые запахи. Лучше изучено обоняние пчел; оказалось, что их способность воспринимать запахи близка к нашей: те запахи, которые воспринимаем мы, воспринимают и пчелы, те запахи, которые смешиваем мы, смешиваются и пчелами; органы обоняния сосредоточены также преимущественно на усиках. Вкусы сладкий, горький, кислый и соленый насекомыми также различаются; органы вкуса находятся на щупальцах ротовых частей, на лапках; острота вкусового ощущения у различных органов одного и того же насекомого может быть различной; она бывает гораздо выше, чем у человека. Сложные глаза насекомого воспринимают движение предметов, могут в некоторых случаях воспринимать и форму предметов; высшие перепончатокрылые (пчелы) могут воспринимать и цвета, в том числе и такие, которые человеком не воспринимаются («ультрафиолетовый»); однако цветное зрение не столь разнообразно, как у человека: так, пчела в левой части спектра ощущает желтый цвет, прочие же цвета-как оттенки желтого; правую сине-фиолетовую часть спектра пчелы ощущают также как один цвет. Острота зрения пчел гораздо ниже остроты зрения человека.

В некоторых отрядах, как-то в отряде прямокрылых (Orthoptera), к которым относятся кузнечики, сверчки и саранчовые, распространены так называемые тимпанальные органы строение тимпанальных органов, а равно и то, что виды, обладающие ими, имеют самцов со звуковыми органами, заставляют предполагать в тимпанальных органах органы слуховые. Тимпанальные органы у кузнечиков и сверчков расположены на голени под коленным суставом, а у саранчовых и цикад на боках первого брюшного сегмента наружно представлены углублением, иногда окруженным складкой покрова и с тонкой натянутой перепонкой на дне; на внутренней поверхности перепонки или в ближайшем с ней соседстве расположено нервное окончание своеобразного строения.

Насекомые в массе своей наделены превосходным зрением. Их сложно устроенные фасеточные глаза, к которым иногда добавляются и простые глазки, служат для распознания различных объектов. Некоторые насекомые обеспечены цветовым зрением, целесообразными приборами ночного видения. Интересно, что глаза насекомых – это единственный орган, подобие которого есть у других животных. В тоже время органы слуха, обоняния, вкуса и осязания такого подобия не имеют, но, тем не менее, насекомые прекрасно воспринимают запахи и звуки, ориентируются в пространстве, улавливают и излучают ультразвуковые волны. Тонкое обоняние и вкус позволяют им находить пищу. Разнообразные железы насекомых выделяют вещества для привлечения собратьев, половых партнеров, отпугивания соперников и врагов, а высокочувствительное обоняние способно улавливать запах этих веществ даже за несколько километров.

Многие в своих представлениях связывают органы чувств насекомых с головой. Но оказывается структуры, ответственные за сбор информации об окружающей среде, находятся у насекомых в самых различных частях тела. Они могут определять температуру предметов и пробовать пищу на вкус ногами, определять присутствие света спиной, слышать коленками, усами, хвостовыми придатками, волосками тела и т.д.

Органы чувств насекомых входят в состав сенсорных систем – анализаторов, пронизывающих сетью практически весь организма. Они получают множество различных внешних и внутренних сигналов от рецепторов своих органов чувств, анализируют их, формируют и передают «указания» различным органам для осуществления целесообразных действий. Органы чувств в основном составляют рецепторный отдел, который расположен на периферии (концах) анализаторов. А проводниковый отдел образован центральными нейронами и проводящими путями от рецепторов. В мозге есть определенные участки для обработки информации, поступающей от органов чувств. Они составляют центральную, «мозговую», часть анализатора. Благодаря такой сложной и целесообразной системе, к примеру зрительного анализатора, производится точный расчет и управление органами движения насекомого.

Накоплены обширные знания об удивительных возможностей сенсорных систем насекомых, однако объем книги позволяет привести лишь некоторые из них.

Органы зрения

Глаза и вся сложнейшая зрительная система – это удивительный дар, благодаря которому животные способны получать основную информацию об окружающем мире, быстро распознавать различные объекты и оценивать возникшую ситуацию. Зрение необходимо насекомым при поиске пищи, чтобы избегать хищников, исследовать объекты интереса или обстановку, взаимодействовать с другими особями при репродуктивном и общественном поведении и т.д.

Насекомые оснащены самыми разными глазами. Они могут быть сложными, простыми или добавочными глазками, а также личиночными. Наиболее сложные – фасеточные глаза, которые состоят из большого числа омматидиев, образующих на поверхности глаза шестигранные фасетки. Омматидий по своей сути – это крошечный зрительный аппарат, снабженный миниатюрной линзой, светопроводящей системой и светочувствительными элементами. Каждая фасетка воспринимает лишь небольшую часть предмета, а все вместе они обеспечивают мозаичное изображение предмета целиком. Фасеточные глаза, свойственные большинству взрослых насекомых, расположены по сторонам головы. У отдельных насекомых, например у стрекозы–охотницы, быстро реагирующей на передвижение добычи, глаза занимают половину головы. Каждый ее глаз построен из 28 000 фасеток. Для сравнения у бабочек их 17 000, у комнатной мухи – 4 000. Глазков на голове у насекомых может быть два или три на лбу или темечке, и реже – по ее сторонам. Личиночные глазки у жуков, бабочек, перепончатокрылых во взрослом состоянии заменяются на сложные.

Любопытно, что насекомые во время отдыха не могут закрывать глаза и поэтому спят с открытыми.

Именно глаза способствуют быстрой реакции насекомого-охотника, например богомола. Это, кстати, единственное насекомое, которое способно обернуться и посмотреть себе за спину. Крупные глаза обеспечивают богомолу бинокулярное зрение и позволяют точно рассчитать расстояния до объекта их внимания. Эта способность в сочетании с быстрым выбрасыванием передних ног в сторону добычи делают богомолов превосходными охотниками.

А у жуков вертячка желтоногая, бегающих по воде, глаза позволяют одновременно видеть добычу и на поверхности воды, и под нею. Для этого зрительные анализаторы жука обладают способностью вносить поправку на коэффициент преломления воды.

Восприятие и анализ зрительных раздражений осуществляется сложнейшей системой – зрительным анализатором. Для многих насекомых это один из основных анализаторов. Здесь первичной чувствительной клеткой является фоторецептор. А с ним связаны проводящие пути (зрительный нерв) и другие нервные клетки, расположенные на разных уровнях нервной системы. При восприятии световой информации последовательность событий такова. Полученные сигналы (кванты света) мгновенно кодируются в форме импульсов и передаются по проводящим путям в центральную нервную систему – в «мозговой» центр анализатора. Там эти сигналы тотчас декодируются (расшифровываются) в соответствующее зрительное восприятие. Для его распознания из памяти извлекаются эталоны зрительных образов и другие необходимые сведения. А далее поступает команда различным органам для адекватного ответного действия особи на изменение ситуации.



Показать все


Органы обоняния и вкуса оба, по сути, представляют собой хеморецепторы. Разница состоит в том, что вкусовые рецепторы определяют наличие определенных химических веществ в жидкостях (или влажных субстратах), а обонятельные рецепторы - в воздухе, где вещества находятся в газообразном состоянии.

Органы обоняния преимущественно располагаются на антеннах, а вкуса - на ротовых органах. Первые включают в свой состав дистантные, а вторые - контактные хеморецепторы. Ввиду особенностей восприятия вкусовых и обонятельных ощущений, органы вкуса и обоняния имеют некие различия в строении и функции.

Органы обоняния

Ими являются особые обонятельные сенсиллы, как правило, конического или плакоидного (погруженного) типа. Большей частью они располагаются на усиках. (фото) Иногда среди них также встречаются трихоидные сенсиллы. Очень обильно обонятельные волоски покрывают пчелы - насекомого, которое очень чувствительно к запахам. На каждой антенне рабочей пчелы располагается порядка 6000 сенсилл. А у некоторых насекомых их еще больше: к примеру, у самцов бабочек Antheraea polirhemus их до 60 000.

Обонятельные сенсиллы могут быть собраны в ямки, как, к примеру, у мух на третьем членике антенн. В основании этих волосков лежат группы нервных клеток (нейронов) числом до 40-60 штук. Поверхность сенсилл имеет множество пор (10-20), через которые концевые части отростков нейронов контактируют с летучими веществами, воспринимая запахи.

Как насекомые чувствуют запахи

Пищевые обонятельные сигналы распознаются насекомыми очень хорошо. Вопреки распространенному мнению, для них существуют не только понятия «съедобно - не съедобно», но и более тонкие ощущения. Те виды, которые питаются цветочным нектаром, различают ароматы разных цветов. Другие растительноядные по запаху определяют конкретные виды не цветущих растений, которые подходят им в качестве пищи. Таким образом, насекомые не просто случайно находят еду, а целенаправленно к ней идут, ощущая в воздухе ее запах.

Как правило, привлекательным для них оказывается не запах «в целом», а отдельные его составляющие. Так, жуки-падальщики реагируют на содержание в воздухе скатола, индола, аммиака и других летучих веществ, выделяющихся при гниении белков. Жук-мертвоед ощущает «соблазнительные» для себя запахи на расстоянии до 90 см. А комары, блохи и другие кровососущие насекомые чувствуют повышенную концентрацию углекислого газа и летучих компонентов пота человека и животных. Недаром говорят, что чистый человек меньше привлекает комаров, чем тот, кто не позаботился о своей гигиене. По этой же причине против гнуса отлично работают ловушки-обманки, производящие тепло и углекислый газ.

У самцов насекомых обонятельных рецепторов обычно больше, чем у самок. Но это наблюдается совсем не в связи с более активной добычей ими пищи, а по причине гендерных особенностей. Дело в том, что при помощи сенсилл самцы чувствуют запах феромонов, издаваемый самками, и благодаря этому ищут себе пару для копуляции. Следовательно, чтобы поучаствовать в «празднике жизни» и оставить свой генетический след в ряду поколений, у них должно быть развитое обоняние.

Самцы бабочек чувствуют половые аттрактанты самок за 3-6 км; интересно, что если самка уже оплодотворена, она перестает выделять эти вещества и становится для самцов «невидимой». чувствует присутствие полового аттрактанта в воздухе при его содержании там всего лишь 100 молекул на 1м 3 , а у самца грушевой сатурнии есть способность чувствовать запах самки аж за 10 км. Это рекорд среди насекомых по чувствительности к запахам. (фото)

В колонии муравьев или термитов насекомые различают запах своих сородичей из разных каст, определяя так называемых фуражиров (это те члены семьи, которые отвечают за кормежку всех остальных) и приходя к ним за пищей. Еще некоторые насекомые выделяют запахи тревоги, по которым остальные понимают, что им надо чего-то остерегаться. Кроме того, все насекомые ощущают «запах смерти», издаваемый погибшими сородичами. А в пчелиных ульях матка пчелы выделяет запах, подавляющий развитие яйцеклеток у рабочих пчел.

Обоняние насекомых не только помогает им добывать питание и общаться между собой; при его помощи они распознают представителей других видов, определяют лучшие места для кладки и т.д.

Органы вкуса

Как уже говорилось, в основном хеморецепторы, дающие насекомым возможность ощущать вкус, располагаются у них на ротовых органах. Но их скопления имеются и на других частях тела. К примеру, они встречаются на передних , а иногда на усиках или даже на ! Последнее позволяет самкам определять пригодность того или иного субстрата для откладки , «ощупывая» его задней частью своего .

Органы вкуса представляют собой толстостенные вкусовые сенсиллы, в основании которых лежат от 3 до 5 (в редких случаях до 50-ти) нервных клеток, передающих соответствующие сигналы в центральную нервную систему. Их короткие отростки (дендриты) проходят вверх, к вершине сенсиллы, где через специальное отверстие (пору) нервные окончания дендритов контактируют с пищевыми субстратами. (фото)

У некоторых насекомых строение сенсилл несколько сложнее, чем это представляется вначале. Например, у мухи Phormiareginaв основании вкусовых волосков находятся всего три нейрона, однако все они выполняют разные функции. Один является механорецептором, то есть реагирует на прикосновение, второй определяет сладкий вкус, а третий - соленый. При раздражении «сахарного» нейрона у насекомого возникает рефлекс развертывания хоботка, так как сладкий субстрат является для него привлекательным. Если же ощущается соленый вкус, это заставляет муху утратить интерес к предполагаемой пище.

Как насекомые ощущают вкус

От вкусовых сенсилл нервное возбуждение передается в особые центры головного мозга, где насекомое «осознает» вкус и реагирует на него.

Вкусовые реакции у представителей класса очень разнообразны. Они, как и человек, различают четыре основных вкуса - кислое, сладкое, горькое и соленое. Причем чувствительность насекомых к этим вкусам по факту такая же, как и у нас, а иногда и выше. Так, человек ощущает сладкий вкус, если концентрация сахара в растворе составляет 0,02 моль/л. Пчелы чувствуют его при содержании 0,06 моль/л, а бабочка-адмирал Pyrameis atalanta- при 0,01 моль/л.

Насекомые, «привыкшие» к сладкой пище, должны, на первый взгляд, различать ее лучше, чем кто бы то ни было, однако зачастую это не так. Например, лактоза (молочный сахар) ощущается пчелами как безвкусная по сравнению с потребляемым ими сладким нектаром, а некоторые гусеницы воспринимают ее как сладкое вещество после своей обычной «пресной» зеленой растительности.

Еще одна особенность вкуса у насекомых состоит в том, что они - не любители соленого. Они положительно реагируют на пищевой субстрат лишь тогда, когда концентрация соли в нем достаточно низка. Кстати, самыми солеными насекомым кажутся ионы не натрия, как человеку, а калия.

Замечательной чертой является то, что представители Insecta, оказывается, ощущают вкус дистиллированной воды, которая для нас вкуса не имеет. А у некоторых также проявляется пристрастие к ядовитым соединениям. Так, листоед Chrysolina, питающийся на растениях зверобоя (фото) , имеет особую группу вкусовых рецепторов, которые возбуждаются ядовитым алкалоидом гиперизином, содержащимся в его листьях.

Нервная система . В строении центральной нервной системы у насекомых встречаются те же видоизменения, что и у ракообразных. Наряду со случаями сильного ее расчленения (надглоточный, подглоточный, три грудных и восемь брюшных узлов) и ясно парного строения, что имеет место у примитивных насекомых, встречаются случаи крайней концентрации нервной системы; вся брюшная цепочка может быть сведена к сплошной ганглиозной массе, что особенно часто имеет место у личинок и личинковидных взрослых особей в случае отсутствия конечностей и слабого расчленения тела.

В надглоточном узле привлекает внимание развитие внутренней структуры протоцеребральной части мозга, в частности грибовидных тел. Отмечено, что строение грибовидных тел, которые занимают место в верхней части мозга, образуя здесь одну или две пары бугров по сторонам средней линии, стоит в тесной связи с развитием инстинкта насекомого.

:

1— зрительные лопасти, 2— фронтальная лопасть с грибовидным телом, 3— протоцеребральная доля, 4— дейтоцеребральная доля с усиковым нервом, 5 — нерв парного простого глаза, 6 — фронтальный узел с отходящим от него назад непарным симпатическим нервом (nervus recurrens), 7 — окологлоточная коннектива

Органы чувств . Органы чувств у насекомых дифференцированы и хорошо развиты. Преобладают по своему значению органы осязания и обоняния. Органы осязания наружно представлены щетинкой. Органы обоняния также обладают формой типичной щетинки, которая, видоизменяясь, может превращаться в отчлененные тонкостенные выступы и неотчлененные пальцевидные выступы и тонкостенные плоские участки покрова. Важнейшим местонахождением окончаний обонятельных нервов служат усики.

1акова, например, роль усиков как органов обоняния у мух и чешуекрылых, которые на огромном расстоянии различают даже слабые запахи. Лучше изучено обоняние пчел; оказалось, что их способность воспринимать запахи близка к нашей: те запахи, которые воспринимаем мы, воспринимают и пчелы, те запахи, которые смешиваем мы, смешиваются и пчелами; органы обоняния сосредоточены также преимущественно на усиках. Вкусы сладкий, горький, кислый и соленый насекомыми также различаются; органы вкуса находятся на щупальцах ротовых частей, на лапках; острота вкусового ощущения у различных органов одного и того же насекомого может быть различной; она бывает гораздо выше, чем у человека. Сложные глаза насекомого воспринимают движение предметов, могут в некоторых случаях воспринимать и форму предметов; высшие перепончатокрылые (пчелы) могут воспринимать и цвета, в том числе и такие, которые человеком не воспринимаются («ультрафиолетовый»); однако цветное зрение не столь разнообразно, как у человека: так, пчела в левой части спектра ощущает желтый цвет, прочие же цвета—как оттенки желтого; правую сине-фиолетовую часть спектра пчелы ощущают также как один цвет. Острота зрения пчел гораздо ниже остроты зрения человека.


. Справа — внешнее строение; слева — фронтальный разрез, внутреннее строение: 1— грибовидное (стебельчатое) тело, 2—центральное тело, 3—зрительная лопасть, 4 — обонятельная дейтоцеребральная доля с двумя усиковыми нервами, 5—подглоточный узел с нервами трех челюстей

В некоторых отрядах, как-то в отряде прямокрылых (Orthoptera), к которым относятся кузнечики, сверчки и саранчовые, распространены так называемые тимпанальные органы строение тимпанальных органов, а равно и то, что виды, обладающие ими, имеют самцов со звуковыми органами, заставляют предполагать в тимпанальных органах органы слуховые. Тимпанальные органы у кузнечиков и сверчков расположены на голени под коленным суставом, а у саранчовых и цикад на боках первого брюшного сегмента наружно представлены углублением, иногда окруженным складкой покрова и с тонкой натянутой перепонкой на дне; на внутренней поверхности перепонки или в ближайшем с ней соседстве расположено нервное окончание своеобразного строения.

Еще интересные статьи

Показать все


Органы чувств описываются отдельно от строения , так как в их образовании участвуют не только нервные клетки, но и производные других тканей. Тем не менее, их можно назвать ее частью. Они представляют собой элементы периферической нервной системы, так как содержат чувствительные нервные окончания.

Рецепция и рецепторы

Любой орган чувств состоит из рецепторов - чувствительных элементов особого строения, которые воспринимают определенный вид раздражения. Например, волоски на теле насекомого, выполняющие функцию осязания, чувствуют механическое раздражение, но не воспринимают свет, и так далее.

Всего в организме насекомого существует 4 вида рецепторов.

Механорецепторы

: воспринимают механические колебания. Такие нервные окончания лежат в основе органов осязания и слуха (звук тоже представляет собой механические колебания определенной частоты). Среди механорецепторов, формирующих осязание, есть несколько разновидностей. Одни ощущают давление, другие - вибрацию, третьи - прикосновения и т.д. В общем, механорецепторы весьма разнообразны и «многофункциональны».

Терморецепторы

- структуры, воспринимающие температуру. Они располагаются в покровах насекомых и передают в информацию о ее колебаниях. Причем, при нагревании и охлаждении возбуждаются разные виды терморецепторов: холодовые и тепловые. Без температурной чувствительности жизнь и некоторых насекомых были бы невозможны. Например, рабочие пчелы в улье постоянно контролируют температуру участка гнезда, где развиваются и (фото) . Они то утепляют их, то охлаждают. Температура все время поддерживается на значениях 34,5-35,5 градусов, так как при отклонениях от этой «нормы» погибают.

Хеморецепторы

- чувствительные образования, которые раздражаются химическими веществами. Примером служат органы вкуса и . Несмотря на то, что насекомые устроены примитивнее многих животных, у них найдены особые хеморецепторы, которых больше нет ни у кого. Речь идет о внутренних хеморецепторах, которые определяют постоянство внутренней среды организма: рН и так далее. Пока что эти рецепторы изучены плохо.

Фоторецепторы

- основа органа зрения, нервные окончания, воспринимающие световые волны.

В целом, все рецепторы выполняют лишь одну функцию - рецепцию, то есть, восприятие определенных сигналов. Эти сигналы в виде нервного возбуждения подаются в нервные центры головного мозга и , где информация обрабатывается. В итоге насекомое «решает», как ему поступить в ответ на внешние стимулы.

Органы вкуса

. Чувствительные хеморецепторы находятся у большинства групп на ротовых органах. Однако у мух (фото) , бабочек и пчел они также располагаются на передних ногах (точнее, на их ). Складчатокрылые осы отличаются наличием вкусовых органов на члениках антенн.

У насекомых лучше всего получается различать сладкое, также они способны узнавать кислое, горькое и соленое. Чувствительность к разным вкусам у различных насекомых неодинакова. К примеру, гусеницам бабочек лактоза кажется сладкой, а пчелам - безвкусной. Зато пчелы очень чувствительны к соленому.



Похожие публикации