Явление центрального торможения было открыто. Центральное торможение

В 1863 году И.М. Сеченов открыл процесс торможения в ЦНС.

Торможение существует наряду с возбуждением и представляет собой одну из форм деятельности нейрона. Торможением называют особый нервный процесс, выражающийся в уменьшении или полном отсутствии ответной реакции на раздражение.

Начало изучения торможения в центральной нервной системе связывают с выходом в свет работы И.М.Сеченого «Рефлексы головного мозга» (1863), в которой он показал возможность торможения двигательных рефлексов лягушки при химическом раздражении зрительных бугров головного мозга.

Классический опыт Сеченова заключается в следующем: у лягушки с перерезанным головным мозгом на уровне зрительных бугров определяла время сгибательного рефлекса при раздражении лапки серной кислотой. После этого на зрительные бугры накладывали кристаллик поваренной соли и снова определяли время рефлекса. Оно постепенно увеличивалось, вплоть до полного исчезновения реакции. После снятия кристаллика соли и промывания мозга физиологическим раствором время рефлекса постепенно восстанавливалось. Это позволило говорить о том, что торможение – активный процесс, возникающий при раздражении определенных отделов центральной нервной системы.

Позже И.М.Сеченовым и его учениками было показано, что торможение в центральной нервной системе может возникнуть при нанесении сильного раздражения на любые афферентные пути.

Виды и механизмы торможения. Благодаря микроэлектродной технике исследования стало возможным изучение процесса торможения на клеточном уровне.

В центральной нервной системе наряду с возбуждающими имеются и тормозящие нейроны. На каждой нервной клетке располагаются возбуждающие и тормозящие синапсы. А поэтому в каждый данный момент на теле нейрона возникает в одних синапсах возбуждение, а в других – торможение; соотношение этих процессов определяет характер ответной реакции.

Различают два вида торможения в зависимости от механизмов его возникновения: деполяризационное гиперполяризационное. Деполяризационное торможение возникает вследствие длительной деполяризации мембраны, а гиперполяризационное – вследствие гиперполяризации мембраны.

Наступлению деполяризационного торможения предшествует состояние возбуждения. Вследствие длительного раздражения это возбуждение переходит в торможение. В основе возникновения деполяризационного торможения лежит инактивация мембраны по натрию, вследствие сего уменьшается потенциал действия и его раздражающее влияние на соседние участки, в итоге прекращается проведение возбуждения.



Гиперполяризационное торможение осуществляется с участием особых тормозных структур и связано с изменением проницаемости мембраны по отношению к калию и хлору, что вызывает увеличение мембранного и порогового потенциалов, в результате чего становится невозможной ответная реакция.

По характеру возникновения различают первичное и вторичное торможение. Первичное торможение возникает под влиянием раздражения сразу без предварительного возбуждения и осуществляется с участием тормозных синапсов. Вторичное торможение осуществляется без участия тормозных структур и возникает вследствие перехода возбуждения в торможение.

Первичное торможение по механизму возникновения может быть гиперполяризационным и деполяризационным, а по месту возникновения – постсинаптическим и пресинаптическим.

Первичное гиперполяризационное постсинаптическое торможение характерно для мотонейронов и осуществляется через вставочный тормозной нейрон. Импульс, пришедший к тормозному синапсу, вызывает гиперполяризацию постсинаптической мембраны мотонейрона. При этом возрастает величина МП на 5-8 мВ. Это увеличение МП называют тормозным постсинаптическим потенциалом (ТПСП). Величина и длительность тормозного постсинаптического потенциала зависят от силы раздражения и его взаимодействия с возбуждающим постсинаптическим потенциалом (ВПСП).

Постсинаптическое торможение связано с выделением в синапсах медиатора, который изменяет ионную проницаемость постсинаптической мембраны. Хорошо изучено открытое Экклосом и сотрудниками (1954) постсинаптическое торможение мотонейрона, возникающее под влиянием клеток Реншоу. Клетки Реншоу располагаются в передних рогах спинного мозга и обладают высокой электрической активностью. Они могут даже в ответ на одиночный пресинаптический импульс генерировать потенциалы очень высокой частоты – до 1400 импульсов в секунду. Возбуждение к клеткам Реншоу приходит антидромно (в обратном направлении) по разветвлениям аксона мотонейрона, отходящим от него при выходе из спинного мозга. В свою очередь аксон клетки Реншоу контактирует с сомой этого же мотонейрона. Возбуждение, пришедшее антидромно к клетке Реншоу, вызывает в ней высокочастотный разряд, под влиянием которого в мотонейроне создается ТПСП, длящийся до 100 мс. Этот вид постсинаптического торможения называют возвратным или антидромным торможением. Медиатор клетки Реншоу является ацетилхолин.



Первичное деполяризационное пресинаптическое торможение

Развивается в пресинаптических разветвлениях аксонов афферентных нейронов, к которым подходят окончания промежуточных нейронов, образующие на них аксональные синапсы. Эти нейроны обладают высокой электрической активностью. Посылая высокочастотные разряды, они создают на пресинаптических разветвлениях афферентных аксонов длительную деполяризацию (до нескольких сотен миллисекунд). В связи с этим здесь блокируется проведение импульсов, идущих к синапсам мотонейронов, вследствие чего уменьшается или полностью прекращается их активность.

Пресинаптическое торможение является широко распространенным механизмом в ЦНС. Установлено, что оно может быть вызвано не только импульсами с афферентным волокном, но и при раздражении различных структур головного мозга.

Вторичное торможение осуществляется без участия специальных тормозных структур и развивается в возбуждающих синапсах. Такого типа торможение было изучено Н.Е.Введенским (1886) и названо пессимальным торможением в любом участке, обладающем низкой лабильностью (например, в нервно-мышечном синапсе или в синапсах ЦНС). По механизму возникновения вторичное торможение может быть деполяризационным и гиперполяризационным. Вторичным деполяризационным торможением являются рефрактерность и пессимальное торможение.

Механизм возникновения пессимального торможения детально изучен на нервно-мышечных синапсах. Установлено, что в основе его развития лежит стойкая деполяризация, которая может возникнуть как в постсинаптической, так и в пресинаптической мембране синапса под влиянием частой стимуляции.

Вторичное гиперполяризационное торможение возникает после возбуждения в тех же самых нейронах. При сильном возбуждении нейронов их ПД сопровождается последующей длительной гиперполяризацией, наступающей вследствие повышения проницаемости мембраны по калию. Поэтому возникающий при данной силе раздражения ВПСП становится недостаточным для того, что бы деполяризовать мембрану до критического уровня. В результате наблюдается уменьшение или отсутствие реакции.

Роль торможения.

a. Охранительная роль – для предотвращения истощения медиаторов и прекращения деятельности ЦНС.

b. Участвует в обработке поступающей в ЦНС информации.

c. Торможение важный фактор обеспечения координационной деятельности ЦНС.

15. Координационная деятельность ЦНС. Механизмы координации. Факторы, обеспечивающие возможность координации.

Понятие о координации. Приспособление организма к различным изменениям внешней среды возможно благодаря наличию в ЦНС координации функций. Под координацией понимают взаимодействие нейронов, а, следовательно, и нервных процессов, в ЦНС, которое обеспечивает ее согласованную деятельность, направленную на интеграцию (объединение) функций различных органов и систем организма.

Известен ряд механизмов, лежащих в основе координирующей деятельности нервной системы. Одни из них связаны с морфологическими особенностями ее строения (принцип общего конечного пути, принцип обратных связей), другие – с функциональными свойствами (иррадиация, индукция и др.)

Иррадиация возбуждения в центральной нервной системе. В 1908 г. А. А. Ухтомский и Н. Е. Введенский в совместной работе установили, что любое возбуждение, возникающее при раздражении того или иного рецептора, придя в центральную нервную систему, широко по ней распространяется- иррадиирует . Оно захватывает не только центры данного рефлекса, но и другие участки центральной нервной системы. Иррадиация тем шире, чем сильнее и длительное афферентное раздражение.

В основе иррадиации лежат многочисленные связи аксонов афферентных нейронов с дендритами и телами нейронов ЦНС, имеющих большое число контактов с различными нервными центрами и друг с другом. Возбуждение может распространяться на большие расстояния: от нейронов спинного мозга к различным отделам головного мозга вплоть до коры больших полушарий.

Получены экспериментальные данные, позволяющие говорить о закономерностях иррадиации. Оказалось, что в реакцию вовлекаются прежде всего, нейроны, имеющие самый маленький пороговый потенциал, т.е. обладающие наиболее высокой возбудимостью. В них, прежде всего деполяризация достигает критического уровня и возникает волна возбуждения. При увеличении интенсивности раздражения в реакцию вовлекаются менее возбудимые нейроны, при этом процесс возбуждения захватывает все большее количество клеток ЦНС.

Но, несмотря на широкую связь нервных центров, иррадиация возбуждения в ЦНС имеет свои пределы, вследствие чего в деятельное состояние приходят лишь определенные ее отделы.

Процессы индукции в ЦНС. Индукция – один из важнейших принципов координации, который состоит в том, что при возникновении возбуждения в одном из участков ЦНС в сопряженных центрах возникает противоположный процесс – торможение. И, наоборот, при возникновении торможения в одних центрах в сопряженных возникает возбуждение. Индукция ограничивает процесс иррадиации.

Различают одновременную (или пространственную) и последовательную индукцию. При одновременной индукции в одно и то же время в одном центре возникает процесс возбуждения, а в сопряженном центре – торможение (или наоборот). Примером одновременной индукции может быть рассмотренная выше реципрокная иннервация мышц-антагонистов.

Процессам, происходящим в ЦНС, свойственна большая подвижность, без которой невозможно осуществление сложных и быстрых двигательных актов и других ответных реакций. В одном и том же центре осуществляется смена происходящих в нем процессов на противоположные. Смену возбуждения называют отрицательной последовательной индукцией, а торможение на возбуждение – положительной последовательной индукцией . Благодаря такой последовательной смене процессов в нервных центрах возможно чередование сгибательных и разгибательных реакций конечностей, что необходимо для осуществления двигательного акта.

Конвергенция. Импульсы приходящие в ЦНС по различным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же промежуточным и эфекторным нейронам. Этот факт лег в основу принципа конвергенции, установленного Ч.Шеррингтоном. Конвергенция нервных импульсов объясняется тем, что на теле и дендритах каждого нейрона в ЦНС оканчиваются аксоны множества других нервных клеток. В спинном и продолговатом мозгу конвергенция имеет сравнительно ограниченный характер: на вставочных и моторных нейронах конвергируют афферентные импульсы, возникающие в различных участках рецептивного поля только одного и того же рефлекса. В отличие от этого в высших отделах ЦНС – в подкорковых ядрах и в коре больших полушарий – наблюдается конвергенция импульсов, исходящих из разных рецепторных зон. Поэтому один и тот же нейрон может возбуждаться импульсами, возникающими при раздражении и слуховых, и зрительных, и кожных рецепторов.

Принцип общего конечного пути. Этот принцип исходит из анатомического соотношения между афферентными и эфферентными нейронами. Количество чувствующих нейронов, приносящих возбуждение ЦНС, в 5 раз больше, чем двигательных. Соотношение между ними будет еще больше, если учесть, что вставочные нейроны являются воспринимающими нейронами в ЦНС. В связи с этим к одному мотонейрону приходит множество импульсов от различных рецепторов, но только некоторые из них приобретают рабочее значение. Таким образом, самые разнообразные стимулы могут быть причиной одной и той же рефлекторной реакции, т.е. происходит борьба за «общий конечный путь». Позднее было показано, что не количественное соотношение путей, а функциональные особенности нервных центров определяют, какой из множества нервных импульсов, сталкивающихся на пути к мотонейрону, окажется победителем и завладеет общим конечным путем. В ответ на множество различных раздражений всегда возникает биологически более значимая для организма реакция.

Принцип обратной связи. Воздействие работающего органа на состояние своего центра получило название обратной связи . Она обеспечивает длительное поддержание активности нервных центров, движение процессов возбуждения, торможения в ЦНС и зависит от постоянного притокавторичных афферентных импульсов. Импульсы, которые возникают в результате деятельности различных органов и тканей, называют, вторичными афферентными импульсами , а импульсы, идущие от рецепторов и вызывающие первичный рефлекторный акт, - первичными рефлекторными импульсами.

Вторичные афферентные импульсы возникают в мышцах, сухожилиях и суставах при осуществлении их деятельности. Они, постоянно поступая ото всех органов тела в ЦНС, способствуют ощущению положения нашего тела без зрительного контроля, обеспечивают поддержание нужного уровня функционирования нейронов в каждый данный момент.

Вторичная афферентная импульсация вносит постоянные поправки в осуществляющийся рефлекторный акт и обеспечивает наиболее тонкое приспособление организма к внешним воздействиям.

Афферентные импульсы, идущие от рабочих органов, способствуют созданиюаутогенного (собственного) торможения . Оно возникает в результате поступления в ЦНС афферентных импульсов от рецепторов – сухожильных рецепторов Гольджи. Эти рецепторы приходят в состояние возбуждения при растяжении или сокращении мышц. Возникший ТПСП уменьшает степень активности данного мотонейрона. Величина этих изменений может быть различной. Аутогенное торможение обеспечивает лучшее приспособление мышцы к осуществлению рефлекторного двигательного акта.

Факторы, обеспечивающие возможность координации:

1) Фактор структурно-функциональной связи – это наличие между отделами ЦНС, между ЦНС и различными органами функциональной связи, обеспечивающей преимущественное распространение возбуждения между ними. Прямая связь – управление другим центром или рабочим органом с помощью посылки к ни эфферентных импульсов, ПР: мозжечек посылает импульсы к ядрам ствола мозга. Обратная связь (обратная афферентация ) – управление нервным центром или рабочим органом с помощью афферентных импульсов, поступающих от них. Реципрокная связь – обеспечивает торможение центра – антагониста при возбуждении центра-агониста (мышцы сгибатели и разгибатели).

2) Фактор субординации – подчинение нижележащих отделов ЦНС вышележащим.

3) Фактор силы. Принцип общего конечного пути – в борьбе за общий конечный путь побеждает более сильное возбуждение (более важная команда в биологическом отношении), ПР: при слабом раздражении – рефлекс почесывания, при сильном – оборонительный рефлекс сгибание конечности, при одновременном раздражении возникает только оборонительный рефлекс).

4) Одностороннее проведение возбуждения в химических синапсах упорядочивает распространение возбуждения.

5) Феномен облегчения участвует при выработке навыков – возбуждение быстрее распространяется по проторенным путям, навыки становятся более координированными, ненужные движения постепенно устраняются.

6) Доминанта играет важную роль в процессах координации. Обеспечивает автоматизированное выполнение двигательных актов в процессе трудовой деятельности (доминанта двигательных центров).

Непрерывная смена процессов возбуждения и торможения в корковых клетках определяет цикличность работы отдельных органов и всего организма в целом. Этим объясняется иногда кажущаяся невероятная работоспособность некоторых выдающихся людей; недаром говорят, что гениальность на 90% заключается в высокой трудоспособности, которая во многом зависит от рациональной системы работы. Такую глубоко продуманную систему, как правило, создавали для себя все выдающиеся люди.

8) Рефлекс. Принципы рефлекторной деятельности. Безусловные и условные рефлексы.

Рефлекторный принцип деятельности нервной системы

Взаимодействие нервных клеток составляет основу целенаправленной деятельности нервной системы и прежде всего осуществления рефлекторных актов. Таким образом, нервная регуляция носит рефлекторный характер.

Рефлексом называют ответную реакцию организма на раздражение рецепторов, осуществляемую через центральную нервную систему (ЦНС). Основные положения рефлекторного принципа деятельности ЦНС разрабатывались на протяжении двух с половиной столетий. Ученые выделяют пять этапов развития данной концепции.

Первый этап . Связан с формированием в ХУ11 столетии основ понимания рефлекторного принципа деятельности ЦНС. Принцип рефлекторной (отражательной) деятельности нервной системы был выдвинут в 17 столетии французским философом и математиком Рене Декартом, который считал, что все вещи и явления можно объяснить естественнонаучным путем. Данная исходная позиция позволила Р.Декарту сформулировать два важных положения рефлекторной теории:

1) деятельность организма при внешнем воздействии является отраженной (впоследствии ее стали называть рефлекторной – от лат reflexus– отраженный);

2) ответная реакция на раздражение осуществляется при помощи нервной системы.

Согласно теории Р.Декарта, нервы – это трубочки, по которым с огромной скоростью движутся животные духи, материальные частицы неизвестной природы. По нервам они попадают в мышцу, которая в результате раздувается (сокращается).

Второй этап . Связан с экспериментальным обоснованием материалистических представлений о рефлексе (ХУ11 – ХУ111 вв.). В частности, было установлено, что рефлекторная реакция может осуществляться на одном метамере лягушки (метаме р - сегмент спинного мозга, связанный с «кусочком тела»). Значительный вклад в развитие представлений о рефлекторной деятельности нервной системы внес чешский физиолог18 столетия И.Прохазка, который исходил из признания единства организма и окружающей среды, а также утверждал ведущую роль нервной системы в регуляции функций организма. Именно И.Прохазкой был предложен сам же термин «рефлекс». Кроме того, он ввел в физиологию закон силы (увеличение силы стимула увеличивает силу рефлекторной реакции организма; стимулы имеются не только внешние, но и внутренние); впервые дал описание классической рефлекторной дуги. В этот временной отрезок учеными в результате клинических экспериментальных исследований установлена роль задних (чувствительных) и передних (двигательных) корешков спинного мозга (закон Белла – Мажанди). Активно рефлекторная деятельность (в частности, сегментарные рефлексы) изучает Ч.Шеррингтон. В результате своих научных изысканий ученый описывает принцип афферентной иннервации мышц-антагонистов, вводит понятие «синапс», принцип общего нервного пути, понятие об интегративной деятельности нервной системы.

Третий этап . Утверждаются материалистические представления о психической деятельности (И.М.Сеченов, 60-е годы Х1Х в). Наблюдая за развитием детей, ученый приходит к выводу о том, что в основе формирования психической деятельности лежит именно принцип рефлекса. Это свое утверждение он выразил в следующей фрезе: «Все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы». При изучении рефлексов он обосновал приспособительный характер изменчивости рефлекса, открыл механизм торможения рефлексов, а также механизм суммации возбуждения в ЦНС.

Четвертый этап . Связан с разработкой основ учения о высшей нервной деятельности (исследования И.П.Павлова, начало ХХ столетия). И.П.Павлов открыл условные рефлексы и использовал их как объективный метод в изучении психической деятельности (высшей нервной деятельности). Ученым были сформулированы три основных принципа рефлекторной теории:

1. Принцип детерминизма (принцип причинности), согласно которому любая рефлекторная реакция причинно обусловлена. И.П.Павлов утверждал: «Нет действия без причины». Всякая деятельность организма, каждый акт нервной деятельности вызван определенной причиной, воздействием из внешнего мира или внутренней среды организма. Целесообразность реакции определяется специфичностью раздражителя, чувствительностью к ним (раздражителям) организма.

2. Принцип структурности. Его сущность заключается в том, что рефлекторная реакция осуществляется с помощью определенных структур. Чем больше структур, структурных элементов участвует в осуществлении этой реакции, тем она совершеннее. В мозге нет процессов, которые не имели бы материальной основы. Каждый физиологический акт нервной деятельности приурочен к определенной структуре.

3. Принцип единства процессов анализа и синтеза в составе рефлекторной реакции. Нервная система анализирует, т.е. различает, с помощью рецепторов все действующие внешние и внутренние раздражители и на основании этого анализа формирует целостную ответную реакцию – синтез. Анализ и синтез как поступающей информации, так и ответных реакций происходит в мозге непрерывно. В результате организм извлекает из окружающей среды полезную информацию, перерабатывает ее, фиксирует в памяти и формирует ответные действия в соответствии с обстоятельствами и потребностями.

Пятый этап . Характеризуется созданием учения о функциональных системах (исследования П.К.Анохина, середина ХХ в). Функциональная система – это динамическая совокупность различных органов и тканей, формирующаяся для достижения полезного (приспособительного) результата. Полезным результатом является поддержание постоянства внутренней среды организма с помощью регуляции функций внутренних органов и поведенческой соматической регуляции (например, поиск и потребление воды при ее недостатке в организме и возникновении жажды – биологической потребности). Полезным результатом может быть и удовлетворение социальной потребности (достижение высоких результатов учебной деятельности).

Исследуя рефлекторную основу жизнедеятельности живых организмов, ученые пришли к выводу о том, что базовыми являются рефлексы врожденные (безусловные), поскольку именно эти рефлексы, сформировавшиеся за миллионы лет эволюции, одинаковы для всех представителей конкретного вида животных организмов и мало зависят от ситуативных условий существования того или иного конкретного представителя данного вида животных. При резком же изменении условий окружающей среды безусловный рефлекс может привести и к гибели организма.

Безусловные рефлексы – ответная реакция организма на раздражение сенсорных рецепторов, осуществляемая с помощью нервной системы. И.П.Павлов выделил, в первую очередь, безусловные рефлексы, направленные на самосохранение организма (основными здесь являются пищевые, оборонительные, ориентировочные и некоторые другие). Данные рефлексы составляют большие группы разнообразных врожденных реакций.

Безусловно-рефлекторная деятельность изучалась П.В.Сомоновым. По мнению ученого, освоению каждой сферы среды соответствуют три разных класса безусловных рефлексов:

  • витальные безусловные рефлексы, которые обеспечивают индивидуальное и видовое сохранение организма (пищевой, питьевой, регуляция сна, оборонительный и ориентировочный, рефлекс экономии сил и т.д.). Критериями данных рефлексов являются: физическая гибель особи в результате неудовлетворения соответствующей потребности, реализация безусловного рефлекса без участия другой особи того же вида;
  • ролевые (зоосоциальные). Могут быть реализованы лишь только путем взаимодействия с другими особями своего вида. Данные рефлексы лежат в основе территориального, родительского и т.п. поведения. Кроме того, они имеют огромное значение для феномена эмоционального резонанса, «сопереживания» и формирования групповой иерархии, где каждая отдельная особь неизменно выступает в той или иной роли (брачного партнера, родителя или детеныша, хозяина территории или пришельца, лидера или ведомого и т.д.);
  • безусловные рефлексы саморазвития. Они ориентированы на освоение новых пространственно-временных сред, обращены к будущему. К их числу относится исследовательское поведение, безусловный рефлекс сопротивления (свободы), имитационный (подражательный) и игровой.

К числу безусловных рефлексов ученые относят и ориентировочный рефлекс. Ориентировочный рефлекс – безусловно-рефлекторное непроизвольное сенсорное внимание, сопровождаемое повышением тонуса мышц, вызванное неожиданным или новым для организма раздражителем. Данную реакцию ученые часто называют рефлексом настораживания, тревоги, удивления, а И.П.Павлов определил ее как рефлекс «что такое?». Ориентировочный рефлекс характеризуется проявлением целого комплекса реакций. Ученые выделяют три фазы в развитии данного рефлекса.

Первая фаза. Характеризуется прекращением текущей деятельности и фиксацией позы. По мнению П.В.Симонова, это общее (превентивное) торможение, которое возникает на появление любого постороннего раздражителя с неизвестным сигнальным значением.

Вторая фаза . Она начинается, когда состояние «стоп-реакции» переходит в реакцию активации. На данной фазе весь организм переводится в состояние рефлекторной готовности к возможной встрече с чрезвычайной ситуацией, что проявляется, выражается в общем повышении тонуса всей скелетной мускулатуры. На данной фазе ориентировочный рефлекс проявляется в форме поликомпонентной реакции, включающей в себя поворот головы и глаз в направлении стимула.

Третья фаза . Начинается с фиксации поля раздражителя для развертывания процесса дифференцированного анализа внешних сигналов и принятия решения об ответной реакции организма.

Поликомпонентный состав ориентировочного рефлекса свидетельствует о его сложной морфофункциональной организации.

Ориентировочный рефлекс входит в структуру ориентировочного поведения (ориентировочно-исследовательской деятельности), что особенно ярко проявляется в новой обстановке. Исследовательская деятельность здесь может быть направлена как на освоение новизны, удовлетворение любопытства, так и на поиск раздражителя, объекта, способного удовлетворить эту потребность. Кроме того, ориентировочный рефлекс направлен и на определение «значимости» раздражителя. При этом наблюдается повышение чувствительности анализаторов, что облегчает восприятие воздействующих на организм раздражителей и определение их значения.

Механизм осуществления ориентировочного рефлекса является результатом динамического взаимодействия между множеством различных образований специфических и неспецифических систем ЦНС. Так, фазу общей активации связывают главным образом с активацией стволовой ретикулярной формации и генерализованным возбуждением коры. В развитии фазы анализа стимула ведущее место занимает корково-лимбико-таламическая интеграция. При этом важную роль играет гиппокамп. Это обеспечивает специализированность процессов анализа «новизны» и «значимости» стимула.

Наряду с безусловными рефлексами которые могут быть отнесены к низшей нервной деятельности, у высших животных и человека на основе этой низшей нервной деятельности сформировались новые механизмы приспособления к постоянно меняющимся условиям окружающей среды – высшая нервная деятельность. С ее помощью, а конкретнее, при помощи условных рефлексов, эти живые организмы приобрели способность реагировать не только на непосредственное воздействие биологически значимых агентов (пищевых, оборонительных и пр.), но и на их отдаленные признаки.

На рубеже Х1Х и ХХ столетий известный русский физиолог И.П.Павлов, долгое время изучавший функции пищеварительных желез (за эти исследования ученый был удостоен Нобелевской премии в 1904г.), обнаружил у экспериментальных животных регулярное повышение секреции слюны и желудочного сока не только при попадании пищи в ротовую полость, а затем в желудок, но и при одном лишь ожидании приема пищи. В то время механизм такого явления был неизвестен и объяснялся «психическим возбуждением слюнных желез». В результате дальнейших научных исследований в данном направлении это явление ученым было названо как условные рефлексы . По мнению И.П.Павлова, условные рефлексы вырабатываются на основе безусловных и являются приобретенными в процессе жизнедеятельности. Кроме того, условные рефлексы непостоянны, то есть, могут появляться и исчезать на протяжении жизни человека в зависимости от меняющихся условий существования. Приобретение условных рефлексов происходит на протяжении всей жизни человека. Оно обусловлено непосредственным, постоянно изменяющимся окружением. Вновь приобретенные условные рефлексы многократно увеличивают и расширяют диапазон приспособительных реакций животных и человека.

Для выработки условного рефлекса необходимо совпадение во времени двух раздражителей, действующих на животное (или человека). Один из этих раздражителей при любых обстоятельствах вызывает закономерную рефлекторную реакцию, классифицируемую как безусловный рефлекс. Сам же такой раздражитель определяется как рефлекс условный. Другой раздражитель, применяемый для выработки условного рефлекса, в силу своей обыденности, как правило, не вызывает никакой реакции и определяется как индифферентный (безразличный). Раздражители такого рода лишь только при первых предъявлениях вызывают определенную ответную ориентировочную реакцию, которая, например, может проявляться в повороте головы и глаз в сторону действующего стимула. При повторных действиях стимула (раздражителя) ориентировочный рефлекс ослабевает, а затем и полностью исчезает в результате механизма привыкания, и тогда вызвавший его раздражитель становится индифферентным.

Как показали многочисленные исследования И.П.Павлова и его коллег, условный рефлекс вырабатывается при соблюдении следующих правил:

1. Индифферентный раздражитель должен подействовать на несколько секунд раньше, чем безусловный стимул. Исследования И.П.Павлова, проводимые на собаках, показали, что если, например, индифферентный раздражитель (различные звуковые сигналы) начнет действовать непосредственно в процессе кормления, а не до его начала, то условный рефлекс не образуется.

2. Биологическая значимость индифферентного раздражителя должна быть меньшей, чем у безусловного раздражителя. Опять же, ссылаясь на проводимые в лаборатории И.П.Павлова исследования, необходимо отметить, что если, например, использовать слишком громкие, пугающие звуковые сигналы, давая животному сразу после этого пищу, условный рефлекс не образуется.

3. Образованию условного рефлекса не должны мешать посторонние раздражители, отвлекающие на себя внимание животного.

О выработанном условном рефлексе можно говорить в том случае, если ранее индифферентный стимул начнет вызывать такую же реакцию, как и безусловный раздражитель, используемый в сочетании с ним. Так, если кормлению животного несколько раз предшествовало включение какого-либо звукового сигнала и в результате этого сочетания в дальнейшем только лишь при звуковом сигнале стало возникать слюноотделение, то эту реакцию следует считать проявлением условного рефлекса. Действие безусловного раздражителя вслед за индифферентным определяется как подкрепление, а когда индифферентный прежде стимул начинает вызывать рефлекторную реакцию, он становится условным раздражителем (условным сигналом).

Существует несколько подходов к классификации условных рефлексов.

В первую очередь, все условные рефлексы ученые делят (как и безусловные) на следующие группы.

По биологическому значению их различают на пищевые, оборонительные и т.д.

По виду рецепторов , с которых идет выработка, условные рефлексы делят на экстерорецептивные, проприорецептивные, интерорецептивные. В исследованиях В.М.Быкова и В.Н.Черниговского с их коллегами была показана связь коры больших полушарий со всеми внутренними органами. Интерорецептивные условные рефлексы сопровождаются, как правило, расплывчатыми ощущениями, которые еще И.М.Сеченов определил как «темные чувства», влияющие на настроение и работоспособность. Проприорецептивные условные рефлексы лежат в основе научения двигательным навыкам (ходьбе, производственным операциям и пр.). Экстерорецептивные условные рефлексы формируют приспособительное поведение животных по добыванию пищи, избеганию вредных воздействий, продолжению рода и т.д. Для человека важнейшее значение имеют экстерорецептивные словесные раздражители, формирующие поступки и мысли.

По функции отдела нервной системы и характеру эфферентного ответа различают условные рефлексы соматические (двигательные) и вегетативные (сердечно-сосудистые, секреторные, выделительные и пр.).

По отношению сигнального раздражителя к безусловному (подкрепляющему) раздражителю все условные рефлексы делят на натуральные и искусственные (лабораторные). Натуральные условные рефлексы формируются на сигналы, являющиеся естественными признаками подкрепляющего раздражителя (запах¸ цвет, определенное время и т.д.). Например, прием пищи в одно и то же время ведет к выделению пищеварительных соков и некоторых других реакций организма (например, лейкоцитоз к моменту приема пищи). Искусственными (лабораторными) называют условные рефлексы на такие сигнальные раздражители, которые в природе не имеют отношения к безусловному (подкрепляющемуся) раздражителю. Основными из этих условных рефлексов являются следующие:

  • по сложности различают: простые условные рефлексы, вырабатываемые на одиночные раздражители (классические условные рефлексы, открытые И.П.Павловым); комплексные условные рефлексы (рефлексы, образующиеся на воздействие нескольких сигналов, действующих либо одновременно, либо последовательно); цепные рефлексы – рефлексы на цепь раздражителей, каждый из которых вызывает свой условный рефлекс (типичным примером здесь может быть динамический стереотип),
  • по соотношению времени действия условного и безусловного раздражителей различают рефлексы наличные и следовые. Для выработки условных наличных рефлексов характерно совпадение действия условного и безусловного раздражителей. Следовые рефлексы вырабатываются в условиях, когда безусловный раздражитель подключается несколько позднее по времени (через 2-3 мин), чем условный. Т.Е. выработка условного рефлекса происходит на след сигнального стимула,
  • по выработке условного рефлекса на базе другого условного рефлекса различают условные рефлексы первого, второго, третьего и других порядков. Рефлексы первого порядка – это условные рефлексы, выработанные на базе безусловных рефлексов (классические условные рефлексы). Рефлексы второго порядка вырабатываются на базе условных рефлексов первого порядка, при

Торможение в ЦНС

1. Первичное – с участием тормозных структур

1)Постсинаптическое

Возвратное

Рецепторное

Латеральное

2)Пресинптическое

2. Вторичное – без участия тормозных структур

1) Торможение вслед за возбуждением

2) Пессимальное торможение(По Веденскому)

4) парабиотическое

Современные представления о механизмах центрального торможения(Дж.Экклс,Реншоу)

Дж. Эклс,- доказал, что корзинчатые и звездчатые кл., кот. заканчиваются синапсами на кл. Пуркинье, вызывают в них тормозные постсинаптические потенциалы (ТПСП) и подавление импульсной активности.

Примером первичного торможения является открытое Б. Реншоу возвратное торможение. Оно осуществляется в нейронной цепи, кот. сост. из мотонейрона и вставоч. тормозного нейрона - кл. Реншоу. Это торможение реализуется за счет функции тормозных синапсов, кот. клетка Реншоу образует на теле активирующего ее мотонейрона.

Постсинаптическое торможение, виды, механизмы.

Постсинаптическое торможение- обеспечивается за счет ГАМК и глицина. Тормозная клетка обращает синапс на теле нейрона. На окончании тормозного нейрона выделяется тормозной медиатор, который вызывает гиперполяризацию постсинапптической мембраны. Возникает ТПСП.

1) прямое постсинаптическое торможение- возникает когда тормозная клетка получает импульсы от афере нотного нейрона или от выше лежащих отделов ЦНС.

2) возвратное - клетки Реншоу получают импульсы по коллатералям аксона эффертного нейрона. Эфферентный нейрон образует аксон, который иннервирует скелетные мышцы. От этого аксона отходят ответвление, которое обращает синапс на клетке Реншоу. Клетка Реншоу тормозит нейрон, от которого получает нервный импульс.

3) реципропное торможение- возбуждение одного центра сопровождается торможением другого центра, осуществляющего антагонистический рефлекс. Это механизм координации деятельности центров.

4) латеральное торможение- распределение процесса торможения на нервных центрах, которые находятся рядом с очагом возбуждения. Блокируется центром расположенным рядом с нейроном его возбуждающиим.

Пресинаптическое торможение, механизмы.

Пресинаптическое торможение- развивается на мембране возбужденного синапса(аксо-аксональный синапс). Медиатор ГАМК изменяет проницаемость мембраны для Cl и Са. В результате на постсинаптическоц мембране возникают явления стойкой деполяризации, затем падения возбудимости.

Вторичное торможение, виды, механизмы.

Вторичное торможение возникает в обычных возбудимых структурах и связано с процессом возбуждения.

1) торможение вслед за возбуждением- угнетение нейрона после возбуждения. После пика ПД возникает период ледовой гиперполяризации, которая характеризуется снижением возбуждения.

2) пессимальное торможение(по Веденскому)- в синапсах ЦНС при действии сильных и частых раздражений.

3) запредельное- в нейронах ЦНС,когда поток иннервации к телу нейрона выше его распространения. Развивается резкое снижение возбудимости нейрона.

4) парабиотическое- при действии сильных и длительных раздражителей(парабиоз)

Торможение - активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное . Для его возникновения необходимо наличие специальных тормозных нейронов . Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора .

Различают два вида первичного торможения:

- пресинаптическое в аксо-аксональном синапсе;

- постсинаптическое в аксодендрическом синапсе.

2) вторичное . Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения.

Виды вторичного торможения:

- запредельное , возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;

- пессимальное , возникающее при высокой частоте раздражения; парабиотическое, возникающее при сильно и длительно действующем раздражении;

Торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;

Торможение по принципу отрицательной индукции;

Торможение условных рефлексов.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.

В 1862 г. И. М. Сеченов открыл явление центрального торможения . Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.


Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга - клеток Реншоу, что приводит к торможению α-мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.

Тормозные синапсы образованы специальными тормозными нейронами (точнее, их аксонами). Медиатором могут быть глицин, ГАМК и ряд других веществ. Обычно глицин вырабатывается в синапсах, с помощью которых осуществляется постсинаптическое торможение. При взаимодействии глицина как медиатора с глициновыми рецепторами нейрона возникает гиперполяризация нейрона (ТПСП ) и, как следствие, - снижение возбудимости нейрона вплоть до полной его рефрактерности. В результате этого возбуждающие воздействия, оказываемые через другие аксоны, становятся малоэффективными или неэффективными. Нейрон выключается из работы полностью.

Тормозные синапсы открывают в основном хлорные каналы, что позволяет ионам хлора легко проходить через мембрану. Чтобы понять, как тормозные синапсы тормозят постсинаптический нейрон, нужно вспомнить, что мы знаем о потенциале Нернста для ионов Сl-. Мы рассчитали, что он равен примерно -70 мВ. Этот потенциал отрицательнее, чем мембранный потенциал покоя нейрона, равный -65 мВ. Следовательно, открытие хлорных каналов будет способствовать движению отрицательно заряженных ионов Сl- из внеклеточной жидкости внутрь. Это сдвигает мембранный потенциал в направлении более отрицательных значений по сравнению с покоем приблизительно до уровня -70 мВ.

Открытие калиевых каналов позволяет положительно заряженным ионам К+ двигаться наружу, что приводит к большей отрицательности внутри клетки, чем в покое. Таким образом, оба события (вход ионов Сl- в клетку и выход ионов К+ из нее) увеличивают степень внутриклеточной отрицательности. Этот процесс называют гиперполяризацией . Увеличение отрицательности мембранного потенциала по сравнению с его внутриклеточным уровнем в покое тормозит нейрон, поэтому выход значений отрицательности за пределы исходного мембранного потенциала покоя называют ТПСП .

Функциональные особенности соматической и вегетативной нервной системы. Сравнительная характеристика симпатического, парасимпатического и метасимпатического отделов вегетативной нервной системы.

Первое и основное отличие строения ВНС от строения соматической состоит в расположении эфферентного (моторного) нейрона. В СНС вставочный и моторный нейроны располагаются в сером веществе СМ, в ВНС эффекторный нейрон вынесен на периферию, за пределы СМ, и лежит в одном из ганглиев — пара-, превертебральном или интраорганном. Более того, в метасимпатической части ВНС весь рефлекторный аппарат полностью находится в интрамуральных ганглиях и нервных сплетениях внутренних органов.

Второе отличие касается выхода нервных волокон из ЦНС. Соматические НВ покидают СМ сегментарно и перекрывают иннервацией не менее трех смежных сегментов. Волокна же ВНС выходят из трех участков ЦНС (ГМ, грудопоясничного и крестцового отделов СМ). Они иннервируют все органы и ткани без исключения. Большинство висцеральных систем имеет тройную (симпатическую, пара- и метасимпатическую) иннервацию.

Третье отличие касается иннервации органов соматической и ВНС. Перерезка у животных вентральных корешков СМ сопровождается полным перерождением всех соматических эфферентных волокон. Она не затрагивает дуги автономного рефлекса ввиду того, что ее эффекторный нейрон вынесен в пара- или превертебральный ганглий. В этих условиях эффекторный орган управляется импульсами данного нейрона. Именно это обстоятельство подчеркивает относительную автономию указанного отдела НС.

Четвертое отличие относится к свойствам нервных волокон. В ВНС они в большинстве своем безмякотные или тонкие мякотные, как, например, преганглионарные волокна, диаметр которых не превышает 5 мкм. Такие волокна принадлежат к типу В. Постганглионарные волокна еще тоньше, большая часть их лишена миелиновой оболочки, они относятся к типу С. В отличие от них соматические эфферентные волокна толстые, мякотные, диаметр их составляет 12-14 мкм. Кроме того, пре- и постганглионарные волокна отличаются низкой возбудимостью. Для вызова в них ответной реакции необходима значительно большая, чем для моторных соматических волокон, сила раздражения.

Волокна ВНС характеризуются большим рефрактерным периодом и большой хронаксией. Скорость распространения по ним НИ невелика и составляет в преганглионарных волокнах до 18 м/с, в постганглионарных — до 3 м/с. Потенциалы действия волокон ВНС характеризуются большей, чем в соматических эфферентах, длительностью. Их возникновение в преганглионарных волокнах сопровождается продолжительным следовым положительным потенциалом, в постганглионарных волокнах — следовым отрицательным потенциалом с последующей продолжительной следовой гиперполяризацией (300-400 мс).

ВНС обеспечивает экстраорганную и внутриорганную регуляцию функций организма и включает в себя три компонента:

1) симпатический;

2) парасимпатический;

3) метсимпатический.

Вегетативная нервная система обладает рядом анатомических и физиологических особенностей, которые определяют механизмы ее работы.

Анатомические свойства:

1. Трехкомпонентное очаговое расположение нервных центров. Низший уровень симпатического отдела представлен боковыми рогами с VII шейного по III-IV поясничные позвонки, а парасимпатического - крестцовыми сегментами и стволом мозга. Высшие подкорковые центры находятся на границе ядер гипоталамуса (симпатический отдел - задняя группа, а парасимпатический - передняя). Корковый уровень лежит в области шестого-восьмого полей Бродмана (мотосенсорная зона), в которых достигается точечная локализация поступающих нервных импульсов. За счет наличия такой структуры вегетативной нервной системы работа внутренних органов не доходит до порога нашего сознания.

2. Наличие вегетативных ганглиев . В симпатическом отделе они расположены либо по обеим сторонам вдоль позвоночника, либо входят в состав сплетений. Таким образом, дуга имеет короткий преганглионарный и длинный постганглионарный путь. Нейроны пара-симпатического отдела находятся вблизи рабочего органа или в его стенке, поэтому дуга имеет длинный преганглионарный и короткий постганглионарный путь.

3. Эффеторные волокна относятся к группе В и С.

Физиологические свойства:

1. Особенности функционирования вегетативных ганглиев. Наличие феномена мультипликации (одновременного протекания двух противоположных процессов - дивергенции и конвергенции). Дивергенция - расхождение нервных импульсов от тела одного нейрона на несколько постганглионарных волокон другого. Конвергенция - схождение на теле каждого постганглионарного нейрона импульсов от нескольких преганглионарных.

Это обеспечивает надежность передачи информации из ЦНС на рабочий орган. Увеличение продолжительности постсинаптического потенциала, наличие следовой гиперполяризации и синоптической задержки способствуют передаче возбуждения со скоростью 1,5-3,0 м/с. Однако импульсы частично гасятся или полностью блокируются в вегетативных ганглиях. Таким образом они регулируют поток информации из ЦНС. За счет этого свойства их называют вынесенными на периферию нервными центрами, а вегетативную нервную систему - автономной.

2. Особенности нервных волокон. Преганглионарные нервные волокна относятся к группе В и проводят возбуждение со скоростью 3—18 м/с, постганглионарные - к группе С. Они проводят возбуждение со скоростью 0,5-3,0 м/с. Так как эфферентный путь симпатического отдела представлен преганглионарными волокнами, а парасимпатического - постганглионарными, то скорость передачи импульсов выше у парасимпатической нервной системы.

Таким образом, вегетативная нервная система функционирует неодинаково, ее работа зависит от особенностей ганглиев и строения волокон.

Симпатическая нервная система осуществляет иннервацию всех органов и тканей (стимулирует работу сердца, увеличивает просвет дыхательных путей, тормозит секреторную, моторную и всасывательную активность желудочно-кишечного тракта и т. д.). Она выполняет гомеостатическую и адаптационно-трофическую функции.

Ее гомеостатическая роль заключается в поддержании постоянства внутренней среды организма в активном состоянии, т. е.симпатическая нервная система включается в работу только при физических нагрузках, эмоциональных реакциях, стрессах, болевых воздействий, кровопотерях.

Адаптационно-трофическая функция направлена на регуляцию интенсивности обменных процессов. Это обеспечивает приспособление организма к меняющимся условиям среды существования.

Таким образом, симпатический отдел начинает действовать в активном состоянии и обеспечивает работу органов и тканей.

Парасимпатическая нервная система является антагонистом симпатической и выполняет гомеостатическую и защитную функции, регулирует опорожнение полых органов.

Гомеостатическая роль носит восстановительный характер и действует в состоянии покоя. Это проявляется в виде уменьшения частоты и силы сердечных сокращений, стимуляции деятельности желудочно-кишечного тракта при уменьшении уровня глюкозы в крови и т. д.

Все защитные рефлексы избавляют организм от чужеродных частиц. Например, кашель очищает горло, чиханье освобождает носовые ходы, рвота приводит к удалению пищи и т. д.

Опорожнение полых органов происходит при повышении тонуса гладких мышц, входящих в состав стенки. Это приводит к поступлению нервных импульсов в ЦНС, где они обрабатывают и по эффекторному пути направляются до сфинктеров, вызывая их расслабление.

Метсимпатическая нервная система представляет собой совокупность микроганглиев, расположенных в ткани органов. Они состоят из трех видов нервных клеток - афферентных, эфферентных и вставочных, поэтому выполняют следующие функции:

Обеспечивает внутриорганную иннервацию;

Являются промежуточным звеном между тканью и экстраорганной нервной системой. При действии слабого раздражителя активируется метсимпатический отдел, и все решается на местном уровне. При поступлении сильных импульсов они передаются через парасимпатический и симпатический отделы к центральным ганглиям, где происходит их обработка.

Метсимпатическая нервная система регулирует работу гладких мышц, входящих в состав большинства органов желудочно-кишечного тракта, миокарда, секреторную активность, местные иммунологические реакции и др.

Роль СМ в процессах регуляции деятельности ОДА и вегетативных функций организма. Характеристика спинальных животных. Принципы работы спинного мозга. Клинически важные спинальные рефлексы.

СМ - наиболее древнее образование ЦНС. Характерная особенность строения - сегментарность .

Нейроны СМ образуют его серое вещество в виде передних и задних рогов. Они выполняют рефлекторную функцию СМ.

Задние рога содержат нейроны (интернейроны ), которые передают импульсы в вышележащие центры, в симметричные структуры противоположной стороны, к передним рогам спинного мозга. Задние рога содержат афферентные нейроны, которые реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения.

Передние рога содержат нейроны (мотонейроны ), дающие аксоны к мышцам, они являются эфферентными. Все нисходящие пути ЦНС двигательных реакций заканчиваются в передних рогах.

В боковых рогах шейных и двух поясничных сегментов располагаются нейроны симпатического отдела вегетативной нервной системы, во втором-четвертом сегментах - парасимпатического.

В составе СМ имеется множество вставочных нейронов, которые обеспечивают связь с сегментами и с вышележащими отделами ЦНС, на их долю приходится 97 % от общего числа нейронов спинного мозга. В их состав входят ассоциативные нейроны - нейроны собственного аппарата СМ, они устанавливают связи внутри и между сегментами.

Белое вещество СМ образовано миелиновыми волокнами (короткими и длинными) и выполняет проводниковую роль.

Короткие волокна связывают нейроны одного или разных сегментов спинного мозга.

Длинные волокна (проекционные) образуют проводящие пути спинного мозга. Они формируют восходящие пути, идущие к головному мозгу, и нисходящие пути, идущие от головного мозга.

Спинной мозг выполняет рефлекторную и проводниковую функции.

Рефлекторная функция позволяет реализовать все двигательные рефлексы тела, рефлексы внутренних органов, терморегуляции и т. д. Рефлекторные реакции зависят от места, силы раздражителя, площади рефлексогенной зоны, скорости проведения импульса по волокнам, от влияния головного мозга.

Рефлексы делятся на:

1) экстероцептивные (возникают при раздражении агентами внешней среды сенсорных раздражителей);

2) интероцептивные (возникают при раздражении прессо-, механо-, хемо-, терморецепторов): висцеро-висцеральные - рефлексы с одного внутреннего органа на другой, висцеро-мышечные - рефлексы с внутренних органов на скелетную мускулатуру;

3) проприоцептивные (собственные) рефлексы с самой мышцы и связанных с ней образований. Они имеют моносинаптическую рефлекторную дугу. Проприоцептивные рефлексы регулируют двигательную активность за счет сухожильных и позотонических рефлексов. Сухожильные рефлексы (коленный, ахиллов, с трехглавой мышцы плеча и т. д.) возникают при растяжении мышц и вызывают расслабление или сокращение мышцы, возникают при каждом мышечном движении;

4) позотонические рефлексы (возникают при возбуждении вестибулярных рецепторов при изменении скорости движения и положения головы по отношению к туловищу, что приводит к перераспределению тонуса мышц (повышению тонуса разгибателей и уменьшению сгибателей) и обеспечивает равновесие тела).

Исследование проприоцептивных рефлексов производится для определения возбудимости и степени поражения ЦНС.

Проводниковая функция обеспечивает связь нейронов СМ друг с другом или с вышележащими отделами ЦНС.

Спинальное животное - животное, у которого пересечен СМ, часто на уровне шеи, но функция большей части СМ сохраняется;

Сразу после перерезки СМ большинство его функций ниже места пересечения у спинального животного резко угнетаются. Через несколько часов (у крыс и кошек) или несколько дней, недель (у обезьян) большинство свойственных спинному мозгу функций восстанавливаются почти до нормы, обеспечивая возможность экспериментального исследования препарата.

Торможение - особый нервный процесс, который обусловливается возбуждением и внешне проявляется угнетением другого возбуждения. Оно способно активно распространяться нервной клеткой и ее отростками. Основал учение о центральноv торможение И. М. Сеченов (1863), который заметил, что изгибающий рефлекс лягушки тормозится при химическом раздражении среднего мозга. Торможение играет важную роль в деятельности ЦНС, а именно: в координации рефлексов; в поведении человека и животных; в регуляции деятельности внутренних органов и систем; в осуществлении защитной функции нервных клеток.

Типы торможения в ЦНС

Центральное торможение распределяется по локализации на пре-и постсинаптическое;
по характеру поляризации (зарядом мембраны) - на гипер-и деполяризации;
по строению тормозных нейронных цепей - на реципрокное, или соединенное, обратное и латеральное.

Пресинаптическое торможение , как свидетельствует название, локализуется в пресинаптических элементах и связано с угнетением проведения нервных импульсов в аксональных (пресинаптических) окончаниях. Гистологическим субстратом такого торможения является аксональные синапсы. К возбуждающему аксону подходит вставной тормозной аксон, который выделяет тормозной медиатор ГАМК . Этот медиатор действует на постсинаптическую мембрану, которая является мембраной возбуждающего аксона, и вызывает в ней деполяризацию. Возникшая деполяризация тормозит вход Са2 + из синаптической щели в заключение возбуждающего аксона и таким образом приводит к снижению выброса возбуждающего медиатора в синаптическую щель, торможение реакции. Пресинаптическое торможение достигает максимума через 15-20 мс и длится около 150 мс, то есть гораздо дольше, чем постсинаптическое торможение. Пресинаптическое торможение блокируется судорожными ядами - бикулином и пикротоксин, которые являются конкурентными антагонистами ГАМК .

Постсинаптическое торможение (ГПСП) обусловлено выделением пресинаптическим окончанием аксона тормозного медиатора, который снижает или тормозит возбудимость мембран сомы и дендритов нервной клетки, с которой он контактирует. Оно связано с существованием тормозных нейронов, аксоны которых образуют на соме и дендритах клеток нервных окончаний, выделяя тормозные медиаторы - ГАМК и глицин . Под влиянием этих медиаторов возникает торможение возбуждающих нейронов. Примерами тормозных нейронов являются клетки Реншоу в спинном мозге, нейроны грушевидные (клетки Пуркинье мозжечка), звездчатые клетки коры большого, мозга и др..
Исследованием П. Г. Костюка (1977) доказано, что постсинаптического торможения связано с первичной гиперполяризацией мембраны сомы нейрона, в основе которой лежит повышение проницаемости постсинаптической мембраны для К +. Вследствие гиперполяризации уровень мембранного потенциала удаляется от критического (порогового) уровня. То есть происходит его увеличение - гиперполяризация. Это приводит к торможению нейрона. Такой вид торможения называется гиперполяризационным.
Амплитуда и полярность ГПСП зависят от исходного уровня мембранного потенциала самого нейрона. Механизм этого явления связан с Сl + . С началом развития ТПСП Сl - входит в клетку. Когда в клетке становится его больше, чем снаружи, глицин конформирует мембрану и через открытые ее отверстия Сl + выходит из клетки. В ней уменьшается количество отрицательных зарядов, развивается деполяризация. Такой вид торможения называется деполяризационным.

Постсинаптическое торможение локальное. Развивается оно градуально, способное к суммации, не оставляет после себя рефрактерности . Является более оперативным, четко адресованным и универсальным тормозным механизмом. По своей сути это «центральное торможение», которое было описано в свое время Ch. S. Sherrington (1906).
В зависимости от структуры тормозного нейронного цепочки, различают следующие формы постсинаптического торможения: реципрокное, обратное и латеральное, которое является собственно разновидностью обратного.

Реципрокное (сочетанное) торможение характеризуется тем, что в том случае, когда при активизации афферентов возбуждаются, например, мотонейроны мышц-сгибателей, то одновременно (на этой стороне) тормозятся мотонейроны мышц-разгибателей, действующие на этот же сустав. Происходит это потому, что афференты от мышечных веретен образуют возбуждающие синапсы на мотонейронах мышц-агонистов, а через посредство вставного тормозного нейрона - тормозные синапсы на мотонейронах мышц-антагонистов. С физиологической точки зрения такое торможение очень выгодно, поскольку облегчает движение сустава «автоматически», без дополнительного произвольного или непроизвольного контроля.

Обратное торможение. В этом случае от аксонов мотонейрона отходит одна или несколько коллатералей, которые направляются в вставных тормозных нейронов, например, клеток Реншоу. В свою очередь, клетки Реншоу образуют тормозные синапсы на мотонейроны. В случае возбуждения мотонейрона активизируются и клетки Реншоу, вследствие чего происходит гиперполяризация мембраны мотонейрона и тормозится его деятельность. Чем больше возбуждается мотонейрон, тем больше ощутимые тормозные влияния через клетки Реншоу. Таким образом, обратное постсинаптическое торможение функционирует по принципу отрицательной обратной связи. Есть предположение, что этот вид торможения требуется для саморегуляции возбуждения нейронов, а также для предотвращения их перевозбуждению и судорожным реакциям.

Латеральное торможение. Тормозная цепь нейронов характеризуется тем, что вставные тормозные нейроны влияют не только на воспаленную клетку, но и на соседние нейроны, в которых возбуждение является слабым или вовсе отсутствует. Такое торможение называется латеральным, поскольку участок торможения, который образуется, содержится сбоку (латерально) от возбужденного нейрона. Оно играет особенно важную роль в сенсорных системах, создавая явление контраста.

Постсинаптическое торможения преимущественно легко снимается при введении стрихнина, который конкурирует с тормозным медиатором (глицином) на постсинаптической мембране. Столбнячный токсин также подавляет постсинаптическое торможение, нарушая высвобождение медиатора из тормозных пресинаптических окончаний. Поэтому введение стрихнина или столбнячного токсина сопровождается судорогами, которые возникают вследствии резкого усиления процесса возбуждения в ЦНС, в частности, мотонейронов.
В связи с раскрытием ионных механизмов постсинаптического торможения появилась возможность и для объяснения механизма действия Вr. Натриq бромид в оптимальных дозах широко применяется в клинической практике как седативное (успокоительное) средство. Доказано, что такой эффект натрия бромида связан с усилением постсинаптического торможения в ЦНС. -

Роль различных видов центрального торможения

Главная роль центрального торможения заключается в том, чтобы во взаимодействии с центральным возбуждением обеспечивать возможность анализа и синтеза в ЦНС нервных сигналов, а следовательно, возможность согласования всех функций организма между собой и с окружающей средой. Эту роль центрального торможения называют координационной. Некоторые виды центрального торможения выполняют не только координационную, а и защитную (охранную) роль. Предполагают, что основная координационная роль пресинаптического торможения заключается в угнетении в ЦНС малосущественными афферентными сигналами. За счет прямого постсинаптического торможения согласуется деятельность антагонистических центров. Обратное торможение, ограничивая максимально возможную частоту разрядов мотонейронов спинного мозга, выполняет и координационную роль (согласовывает максимальную частоту разрядов мотонейронов со скоростью сокращения мышечных волокон, которые они иннервируют) и защитную (предотвращает возбуждению мотонейронов). У млекопитающих этот вид торможения распространен в основном в спинномозговых афферентных системах. В высших отделах мозга, а именно в корковом веществе большого мозга, доминирует постсинаптическое торможение.

Какое функциональное значение пресинаптического торможения? За его счет осуществляется воздействие не только на собственный рефлекторный аппарат спинного мозга, но и на синаптические переключения ряда восходящих по головному мозгу трактов. Известно также о нисходящем пресинаптическом торможении первичных афферентных волокон группы Аа и кожных афферентов. В этом случае пресинаптическое торможение является, очевидно, первым «ярусом» активного ограничения информации, поступающей извне. В ЦНС, особенно в спинном мозге, пресинаптическое торможение часто выступает в роли своеобразной отрицательной обратной связи, которая ограничивает афферентную импульсацию при сильных (например, патологических) раздражениях и таким образом отчасти выполняет защитную функцию по отношению спинномозговых и выше расположенных центров.

Функциональные свойства синапсов не являются постоянными. В некоторых условиях эффективность их деятельности может расти или уменьшаться. Обычно при высоких частотах раздражения (несколько сот за 1 с) в течение нескольких секунд или даже минут облегчается синаптическая передача. Это явление получило название синаптической потенциации. Такая синаптическая потенциация может наблюдаться и по окончании тетанической стимуляции. Тогда она будет называться посттетанической потенциацией (ПТП). В основе ПТП (долговременного увеличения эффективности связи между нейронами), вполне вероятно, лежат изменения функциональных возможностей пресинаптического волокна, а именно его гиперполяризация. В свою очередь, это сопровождается повышением выхода медиатора в синаптическую щель и появлением увеличенного ВПСП в постсинаптической структуре. Есть данные и о структурных изменениях при ПТП (набухание и рост пресинаптических окончаний, сужение синаптической щели т.д.).

ПТП гораздо лучше выражена в высших отделах ЦНС (например, в гиппокампе, пирамидных нейронах коры большого мозга) по сравнению с спинномозговыми нейронами. Наряду с ПТП в синаптическом аппарате может возникать постактивационная депрессия, выражающаяся уменьшением амплитуды ВПСП. Эту депрессию многие исследователи связывают с ослаблением чувствительности к действию медиатора (десенсибилизации) постсинаптической мембраны или различным соотношением затрат и мобилизации медиатора.

С пластичностью синаптических процессов, в частности с ПТП, возможно, связаны формирования новых межнейронных связей в ЦНС и их закрепление, т.е. механизмы обучения и памяти. Вместе с тем следует признать, что пластические свойства центральных синапсов изучены пока недостаточно.

Торможение (физиология)

Торможение - в физиологии - активный нервный процесс, вызываемый возбуждением и проявляющийся в угнетении или предупреждении другой волны возбуждения. Обеспечивает (вместе с возбуждением) нормальную деятельность всех органов и организма в целом. Имеет охранительное значение (в первую очередь для нервных клеток коры головного мозга), защищая нервную систему от перевозбуждения.

И. П. Павлов называл иррадиацию торможения по коре больших полушарий головного мозга «проклятым вопросом физиологии».

Центральное торможение

Центральное торможение открыто в 1862 г. И. М. Сеченовым . В процессе опыта он удалил у лягушки головной мозг на уровне зрительных бугров и определял время сгибательного рефлекса. Затем на зрительные бугры помещался кристалл соли в результате чего наблюдалось увеличение продолжительности времени рефлекса. Это наблюдение позволило И. М. Сеченову высказать мнение о явлении торможения в ЦНС. Данный тип торможения называют сеченовским или центральным .

Ухтомский объяснил результаты с позиции доминанты. В зрительных буграх - доминанта возбуждения, которая подавляет действие спинного мозга.

Введенский объяснил результаты с позиции отрицательной индукции. Если в центральной нервной системе возникает возбуждение в определенном нервном центре, то вокруг очага возбуждения индуцируется торможение. Современное объяснение: при раздражении зрительных бугров возбуждается каудальный отдел ретикулярной формации. Эти нейроны возбуждают тормозные клетки спинного мозга (клетки Реншоу ), которые тормозят активность альфа-мотонейронов спинного мозга.

Первичное торможение

Первичное торможение возникает в специальных тормозных клетках, примыкающих к тормозному нейрону. При этом тормозные нейроны выделяют соответствующие нейромедиаторы.

Виды первичного торможения

    Постсинаптическое - основной вид первичного торможения, вызывается возбуждением клеток Реншоу и вставочных нейронов. При этом типе торможения происходит гиперполяризация постсинаптической мембраны, что и обуславливает торможение. Примеры первичного торможения:

    • Возвратное - нейрон воздействует на клетку, которая в ответ тормозит этот же нейрон.

      Реципрокное - это взаимное торможение, при котором возбуждение одной группы нервных клеток обеспечивает торможение других клеток через вставочный нейрон .

      Латеральное - тормозная клетка тормозит расположенные рядом нейроны. Подобные явления развиваются между биполярными и ганглиозными клеткамисетчатки , что создает условия для более четкого видения предмета.

      Возвратное облегчение - нейтрализация торможения нейрона при торможении тормозных клеток другими тормозными клетками.

    Пресинаптическое - возникает в обычных нейронах, связано с процессом возбуждения.

Вторичное торможение

Вторичное торможение возникает в тех же нейронах, которые генерируют возбуждение.

Виды вторичного торможения

    Пессимальное торможение - это вторичное торможение, которое развивается в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под действием множественной импульсации.

    Торможение вслед за возбуждением возникает в обычных нейронах и также связано с процессом возбуждения. В конце акта возбуждения нейрона в нем может развиваться сильная следовая гиперполяризация. В то же время возбуждающий постсинаптический потенциал не может довести деполяризацию мембраны докритического уровня деполяризации , потенциалзависимые натриевые каналы не открываются и потенциал действия не возникает.

Периферическое торможение

Открыто братьями Вебер в 1845 г. В качестве примера можно привести торможение деятельности сердца (снижение ЧСС ) при раздражении блуждающего нерва .

Условное и безусловное торможение

Термины «условное» и «безусловное» торможение предложены И. П. Павловым.

Условное торможение

Условное, или внутреннее, торможение - форма торможения условного рефлекса, возникающее при неподкреплении условных раздражителей безусловными. Условное торможение является приобретенным свойством и вырабатывается в процессе онтогенеза. Условное торможение является центральным торможением и ослабевает с возрастом.

Безусловное торможение

Безусловное (внешнее) торможение - торможение условного рефлекса, возникающее под действием безусловных рефлексов (например, ориентировочного рефлекса ). И. П. Павлов относил безусловное торможение к врожденным свойствам нервной системы, то есть безусловное торможение является формой центрального торможения.

Торможение

Координирующая функция локальных нейронных сетей помимо усиления может выражаться и в ослаблении слишком интенсивной активности нейронов за счет их торможения.

Рис.8.1 .Реципрокное (А), пресинаптическое (Б) и возвратное (В) торможение в локальных нейронных цепях спинного мозга

1 - мотонейрон; 2 - тормозный интернейрон; 3 - афферентные терминали.

Торможение , как особый нервный процесс, характеризуется отсутствием способности к активному распространению по нервной клетке и может быть представлено двумя формами - первичным и вторичным торможением.

Первичное торможение обусловлено наличием специфических тормозных структур и развивается первично без предварительного возбуждения. Примером первичного торможения является так называемое реципрокное торможение мыщц-антагонистов , обнаруженное в спинальных рефлекторых дугах. Суть этого явления состоит в том, что если активируются проприорецепторы мышцы-сгибателя, то они через первичные афференты одновременно возбуждают мотонейрон данной мышцы-сгибателя и через коллатераль афферентного волокна тормозный вставочный нейрон. Возбуждение вставочного нейрона приводит к постсинаптическому торможению мотонейрона антагонистической мышцы-разгибателя, на теле которого аксон тормозного интернейрона формирует специализированные тормозные синапсы. Реципрокное торможение играет важную роль в автоматической координации двигательных актов.

Другим примером первичного торможения является открытое Б. Реншоу возвратное торможение . Оно осуществляется в нейронной цепи, которая состоит из мотонейрона и вставочного тормозного нейрона - клетки Реншоу . Импульсы от возбужденного мотонейрона через отходящие от его аксона возвратные кол-латерали активируют клетку Реншоу, которая в свою очередь вызывает торможение разрядов данного мотонейрона. Это торможение реализуется за счет функции тормозных синапсов, которые клетка Реншоу образует на теле активирующего ее мотонейрона. Таким образом, из двух нейронов формируется контур с отрицательной обратной связью, позволяющий стабилизировать частоту разрядов моторной клетки и подавить идущую к мышцам избыточную импульсацию.

В ряде случаев клетки Реншоу формируют тормозные синапсы не только на активирующих их мотонейронах, но и на соседних мотонейронах со сходными функциями. Осуществляемое через эту систему торможение окружающих клеток называется латеральным .

Торможение по принципу отрицательной обратной связи встречается не только на выходе, но и на входе моторных центров спинного мозга. Явление подобного рода описано в моносинаптических соединенях афферентных волокон со спинальными мотонейронами, торможение которых при данной ситуации не связано с изменениями в постсинаптической мембране. Последнее обстоятельство позволило определить данную форму торможения как пресинаптическое . Оно обусловлено наличием вставочных тормозных нейронов, к которым подходят коллатерали афферентных волокон. В свою очередь, вставочные нейроны формируют аксо-аксональные синапсы на афферентных терминалях, являющихся пресинаптическими по отношению к мотонейронам. В случае избыточного притока сенсорной информации с периферии происходит активация тормозных интернейронов, которые через аксо-аксональные синапсы вызывают деполяризацию афферентных термина-леи и, таким образом, уменьшают количество выделяемого из них медиатора, а следовательно, и эффективность синаптической передачи. Электрофизиологическим показателем этого процесса является снижение амплитуды регистрируемых от мотонейрона ВПСП. Вместе с тем никаких признаков изменений ионной проницаемости или генерации ТПСП в мотонейронах не наблюдается.

Вопрос о механизмах пресинаптического торможения является довольно сложным. По-видимому, медиатором в тормозном аксо-аксональном синапсе является гамма-аминомасляная кислота, которая вызывает деполяризацию афферентных терминалей за счет увеличения проницаемости их мембраны для ионов С1-. Деполяризация снижает амплитуду потенциалов действия в афферентных волокнах и тем самым уменьшает квантовый выброс медиатора в синапсе. Другой возможной причиной деполяризации терминалей может быть повышение наружной концентрации ионов К+ при длительной активации афферентных входов. Следует отметить, что феномен пресинаптического торможения обнаружен не только в спинном мозгу, но и в других отделах ЦНС.

Исследуя координирующую роль торможения в локальных нейронных цепях, следует упомянуть еще об одной форме торможения - вторичном торможении , которое возникает без участия специализированных тормозных структур как следствие избыточной активации возбуждающих входов нейрона. В специальной литературе эту форму торможения определяют как торможение Введенского , который открыл его в 1886 г. при исследовании нервно-мышечного синапса.

Торможение Введенского играет предохранительную роль и возникает при чрезмерной активации центральных нейронов в полисинаптических рефлекторных дугах. Оно выражается в стойкой деполяризации клеточной мембраны, превышающей критический уровень и вызывающей инактивацию Na-каналов, ответственных за генерацию потенциалов действия. Таким образом, процессы торможения в локальных нейронных сетях уменьшают избыточную активность и участвуют в поддержании оптимальных режимов импульсной активности нервных клеток.

ТОРМОЖЕНИЕ В ЦНС. ВИДЫ И ЗНАЧЕНИЕ.

Проявление и осуществление рефлекса возможно только при ограничении распространения возбуждения с одних нервных центров на другие. Это достигается взаимодействием возбуждения с другим нервным процессом, противоположным по эффекту процессом торможения.

Почти до середины XIX века физиологи изучали и знали только один нервный процесс - возбуждение.

Явления торможения в нервных центрах, т.е. в центральной нервной системе были впервые открыты в 1862 году И.М.Сеченовым ("сеченовское торможение”). Это открытие сыграло в физиологии не меньшую роль, чем сама формулировка понятия рефлекса, так как торможение обязательно участвует во всех без исключения нервных актах. И.М.Сеченов обнаружил явление центрального торможения при раздражении промежуточного мозга теплокровных. В 1880 году немецкий физиолог Ф.Гольц установил торможение спинальных рефлексов. Н.Е. Введенский в результате серий опытов по парабиозу вскрыл интимную связь процессов возбуждения и торможения и доказал, что природа этих процессов едина.

Торможение - местный нервный процесс, приводящий к угнетению или предупреждению возбуждения. Торможение является активным нервным процессом, результатом которого служит ограничение или задержка возбуждения. Одна из характерных черт тормозного процесса- отсутствие способности к активному распространению по нервным структурам.

В настоящее время в центральной нервной системе выделяют два вида торможения:торможение центральное (первичное), являющееся результатом возбуждения (активации) специальных тормозных нейронов иторможение вторичное, которое осуществляется без участия специальных тормозных структур в тех самых нейронах в которых происходит возбуждение.

Центральное торможение(первичное) - нервный процесс, возникающий в ЦНС и приводящий к ослаблению или предотвращению возбуждения. Согласно современным представлениям центральное торможение связано с действием тормозных нейронов или синапсов, продуцирующих тормозные медиаторы (глицин, гаммааминомасляную кислоту), которые вызывают на постсинаптической мембране особый тип электрических изменений, названных тормозными постсинаптическими потенциалами (ТПСП) или деполяризацию пресинаптического нервного окончания, с которым контактирует другое нервное окончание аксона. Поэтому выделяют центральное (первичное) постсинаптическое торможение и центральное (первичное) пресинаптическое торможение.

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.

Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатерам к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением . Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали (рис. 87). По такому принципу осуществляетсяторможение мотонейронов.

Возникновение импульса в мотонейроне млекопитающих не только активирует мышечные волокна, но через коллатерали аксона активирует тормозные клетки Реншоу. Последние устанавливают синаптические связи с мотонейронами. Поэтому усиление импульсации мотонейрона ведет к большей активации клеток Реншоу, вызывающей усиление торможения мотонейронов и уменьшение частоты их импульсации. Термин "антидромное” употребляется потому, что тормозной эффект легко вызывается антидромными импульсами, рефлекторно возникающими в мотонейронах.

Чем сильнее возбужден мотонейрон, чем больше сильные импульсы идут к скелетным мышцам по его аксону, тем интенсивнее возбуждается клетка Реншоу, которая подавляет активность мотонейрона. Следовательно, в нервной системе существует механизм, оберегающий нейроны от чрезмерного возбуждения. Характерная особенность постсинаптического торможения заключается в том, что оно подавляется стрихнином и столбнячным токсином (на процессы возбуждения эти фармакологические вещества не действуют).

В результате подавления постсинаптического торможения нарушается регуляция возбуждения в цнс, возбуждение разливается ("диффундирует”) по всей цнс, вызывая перевозбуждение мотонейронов и судорожные сокращения групп мышц (судороги).

Торможение ретикулярное (лат. reticularis - сетчатый) - нервный процесс развивающийся в спинальных нейронах под влиянием нисходящей импульсации из ретикулярной формации (гигантское ретикулярное ядро продолговатого мозга). Эффекты, создаваемые ретикулярными влияниями, по функциональному действию сходны с возвратным торможением, развивающимся на мотонейронах. Влияние ретикулярной формации вызывают стойкие ТПСП, охватывающие все мотонейроны независимо от их функциональной принадлежности. В этом случае, так же как и при возвратном торможении мотонейронов происходит ограничение их активности. Между таким нисходящим контролем со стороны ретикулярной формации и системочй возвратного торможения через клетки Реншоу существует определенное взаимодействие, и клетки Реншоу находятся под постоянным тормозящем контролем со стороны двух структур. Тормозящее влияние со стороны ретикулярной формации являются дополнительным фактором в регуляции уровня активности мотонейронов.

Первичное торможение может вызываться механизмами иной природы, не связанными с изменениями свойств постсинаптической мембраны. Торможение в этом случае возникает на пресинаптической мембране (синаптическое и пресинаптическое торможение).

Синаптическое торможение (греч. sunapsis соприкосновение, соединение) - нервный процесс, основанный на взаимодействии медиатора, секретируемого и выделяемого пресинаптическими нервными окончаниями, со специфическими молекулами постсинаптической мембраны. Возбуждающий или тормозной характер действия медиатора зависит от природы каналов, которые открываются в постсинаптической мембране. Прямое доказательство наличия в цнс специфических тормозящих синапсов было впервые получено Д. Ллойдом (1941).

Данные относительно электрофизиологических проявлений синаптического торможения: наличие синаптической задержки, отсутствие электрического поля в области синаптических окончаний дали основание считать его следствием химического действия особого тормозящего медиатора, выделяемого синаптическими окончаниями. Д. Ллойд показал, что если клетка находится в состоянии деполяризации, то тормозной медиатор вызывает гиперполяризацию, в то время как на фоне гиперполяризации постсинаптической мембраны он вызывает ее деполяризацию.

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

При этом окончание аксона тормозного нейрона является пресимпатическим по отношению к терминали возбуждающего нейрона, которая оказывается постсинаптической по отношению к тормозному окончанию и пресинаптической по отношению к активируемой им нервной клетки. В окончаниях пресинаптического тормозного аксона освобождается медиатор, который вызывает деполяризацию возбуждающих окончаний за счет увеличения проницаемости их мембраны для CI. Деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание аксона. В результате происходит угнетение процесса высвобождения медиатора возбуждающими нервными окончаниями и снижение амплитуды возбуждающего постсинаптического потенциала.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Пресинаптическое торможение существенно отличается от постсинаптического и в фармакологическом отношении. Стрихнин и столбнячный токсин не влияют на его течение. Однако наркотизирующие вещества (хлоралоза, нембутал) значительно усиливают и удлиняют пресинаптическое торможение. Этот вид торможения обнаружен в различных отделах цнс. Наиболее часто оно выявляется в структурах мозгового ствола и спинного мозга. В первых исследованиях механизмов пресинаптического торможения считалось, что тормозное действие осуществляется в точке, отдаленной от сомы нейрона, поэтому его называли "отдаленным” торможением.

Функциональное значение пресинаптического торможения, охватывающего пресинаптические терминали, по которым поступают афферентные импульсы, заключается в ограничении поступления к нервным центрам афферентной импульсации. Пресинаптическое торможение в первую очередь блокирует слабые асинхронные афферентные сигналы и пропускает более сильные, следовательно, оно служит механизмом выделения, вычленения более интенсивных афферентных импульсов из общего потока. Это имеет огромное приспособительное значение для организма, так как из всех афферентных сигналов, идущих к нервным центрам, выделяются самые главные, самые необходимые для данного конкретного времени. Благодаря этому нервные центры, нервная система в целом освобождается от переработки менее существенной информации.

Вторичное торможение - торможение осуществляющееся теми же нервными структурами, в которых происходит возбуждение. Этот нервный процесс подробно изложен в работах Н.Е. Введенского (1886, 1901г.г.).

Торможение реципрокное (лат. reciprocus - взаимный) - нервный процесс, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток. Реципрокные отношения возбуждения и торможения в цнс были открыты и продемонстрированы Н.Е. Введенским: раздражение кожи на задней лапке у лягушки вызывает ее сгибание и торможение сгибания или разгибания на противоположной стороне. Взаимодействие возбуждения и торможения является общим свойством всей нервной системы и обнаруживается как в головном, так и в спинном мозге. Экспериментально доказано, что нормальное выполнение каждого естественного двигательного акта основано на взаимодействии возбуждения и торможения на одних и тех же нейронах цнс.

Общее центральное торможение - нервный процесс, развивающийся при любой рефлекторной деятельности и захватывавающий почти всю цнс, включая центры головного мозга. Общее центральное торможение обычно проявляется раньше возникновения какой-либо двигательной реакции. Оно может проявляться при такой малой силе раздражения при которой двигательный эффект отсутствует. Такого вида торможение было впервые описано И.С. Беритовым (1937). Оно обеспечивает концентрацию возбуждения других рефлекторных или поведенческих актов, которые могли бы возникнуть под влиянием раздражений. Важная роль в создании общего центрального торможения принадлежит желатинозной субстанции спинного мозга.

При электрическом раздражении желатинозной субстанции у спинального препарата кошки происходит общее торможение рефлекторных реакций, вызываемых раздражением сенсорных нервов. Общее торможение является важным фактором в создании целостной поведенческой деятельности животных, а также в обеспечении избирательного возбуждения определенных рабочих органов.

Парабиотическое торможение развивается при патологических состояниях, когда лабильность структур центральной нервной системы снижается или происходит очень массивное одновременное возбуждение большого числа афферентных путей, как, например, при травматическом шоке.

Некоторые исследователи выделяют еще один вид торможения - торможение вслед за возбуждением . Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны (постсинаптической).



Похожие публикации