Конструктивные схемы общественных зданий. Бескаркасное здание

Бескаркасные здания возводятся с несущими наружными и внутренними стенами.
Бескаркасные здания возводят с несущими наружными и внутренними стенами. Здания с неполным каркасом имеют внутренний каркас (колонны, столбы, ригели) и несущие наружные стены.
Бескаркасные здания представляют собой пространственную многоячейковую коробку, состоящую из взаимосвязанных вертикальных и горизонтальных диафрагм - продольных и поперечных стен и перекрытий и отличаются высокой пространственной жесткостью. Такие здания относятся к группе зданий с жесткой конструктивной схемой.
Конструктивные схемы крупнопанельных жилых зданий. Преимуществами бескаркасных зданий по сравнению с каркасными являются: уменьшение номенклатуры сборных элементов (почти втрое), простота монтажа, меньшая трудоемкость работ, большая степень заводской готовности сборных элементов, меньший расход стали (примерно на 15 - 20 %), отсутствие в интерьере выступающих колонн и ригелей.
Здание свйноматочника со станко-выгульным содержанием. В бескаркасных зданиях (рис. 28.1, г) несущие наружные стены каменные (кирпичные, из природного камня, мелких или крупных блоков, панелей) или деревянные. Перекрытия опираются на стены.
В бескаркасных зданиях торцовые кирпичные (или блочные) стены усиливают пилястрами, либо выполняют криволинейного или ломаного очертания в плане. В случае предполагаемого расширения здания или при строительстве его в две очереди торцовые стены делают со стальным каркасом (независимо от материала основного каркаса), заполняя его облегченными ограждающими элементами сборно-разборной конструкции.
В бескаркасных зданиях стены являются несущими, и возводят их аналогично стенам гражданских зданий. Обычно эти стены усиливают пилястрами.
Пространственная коробка бескаркасного здания может рассчитываться как тонкостенный консольный стержень замкнутого профиля с поперечными и продольными диафрагмами (при взаимной связи между поперечными и наружными продольными стенами) либо как совокупность вертикальных диафрагм, соединенных между собой горизонтальными диафрагмами перекрытий.
В последнее время бескаркасные здания из легких металлических конструкций находят широкое применение, несмотря на то, что их удельная металлоемкость в ряде случаев больше, чем у зданий из типовых конструкций.
Наибольшую опасность представляют бескаркасные здания без фундамента из местных материалов, жители которых могут серьезно пострадать.
В связи с этим сборно-разборные бескаркасные здания из легких металлических конструкций находят широкое применение несмотря на то, что их удельная металлоемкость в ряде случаев больше, чем у стационарных зданий из типовых конструкций.
Соединение панелей внутренних стен бескаркасных зданий (рис. 12.15) осуществляется путем сварки соединительных стержней диаметром 12 мм к закладным деталям по верху папели. Вертикальные швы между панелями: н плилют ynpviHMn прокладками из an rnci ii ni jioiiiii.
Таким образом, наибольшую опасность представляют бескаркасные здания без фундамента из местных материалов, жители которых могут серьезно пострадать.

Ленточные фундаменты применяют в основном в бескаркасных зданиях с несущими стенами.
Для возможности осуществления поддомкрачивания под цокольным поясом бескаркасных зданий следует предусматривать ниши для установки домкратов. Над нишами и под ними должны устраиваться железобетонные пояса для распределения сосредоточенных нагрузок от домкратов. По подошве фундаментов следует предусматривать пояс для восприятия усилий от горизонтальных деформаций.
Крупноблочные ГРУ 6 - 10 кВ в бескаркасном здании (рис. 7.5) разработаны Теплоэлектрапроектом.
Унификация конструктивных узлов проводится на основе сравнения различных конструктивных схем: бескаркасных зданий с поперечными или продольными стенами, зданий с неполным каркасом (с несущими наружными стенами) и зданий с полным каркасом. Сравнение показывает, что наиболее универсальной конструкцией является полный каркас, который допускает широкое варьирование планов с включением в них помещений различной площади и конфигурации; позволяв.
Неравномерные осадки здания (разность осадок для каркасных зданий) или прогиб (перегиб) несущих стен бескаркасных зданий определяются инженерно-геодезическим нивелированием III класса с учетом следующих упрощающих измерение особенностей.
Несущие стены, воспринимающие нагрузки от покрытия здания, транспортных средств и ветра, обычно проектируют для невысоких, отапливаемых бескаркасных зданий и строят по ленточным или столбчатым фундаментам. Несущие стены выполняют из кирпича, мелких и крупных блоков.
Конструкция ГРУ яе требует сооружения громоздкого каркасного здания. Одноэтажное бескаркасное здание высотой 4 м и шириной 12 м собирают из стеновых железобетонных панелей, которые одновременно служат перегородками между ячейками и несущими конструкциями. На кровле здания сделана надстройка из металлических камер, в которых расположены шинные разъединители.
Бескаркасные крупнопанельные здания выполняются с поперечными или продольными несущими конструкциями. К бескаркасным зданиям относятся также здания, собираемые из объемных блоков размером на комнату, две комнаты или на целую квартиру.
Значение отношений / и / зависит от конструктивной схемы зданий или сооружений. В бескаркасных зданиях с несущими продольными внутренними и наружными стенами разница этих отношений минимальна. В зданиях с каркасом по полной схеме у внутренних колонн ока больше, а у пристенных колонн и несущих стен максимальна.
По конструктивной схеме эти - здания делятся на две группы: щитовые (бескаркасные) и каркасно-щитовые. В бескаркасных зданиях несущими элементами являются щиты наружных и внутренних стен. В каркасно-щитовых домах нагрузка воспринимается каркасом, а щиты служат только заполнением. И в тех и в других зданиях из щитов можно собирать не только стены, но и перекрытия.
Схемы бескаркасных и каркасных зданий. Различают две основные конструктивные схемы зданий: бескаркасную и каркасную. В бескаркасных зданиях все нагрузки от крыши и перекрытий воспринимаются несущими стенами - продольными, поперечными или и теми и другими одновременно. В каркасных зданиях все нагрузки воспринимаются каркасом, представляющим собой систему колонн, прогонов, балок связанных друг с другом. В последнем случае панели стен называются навесными.
Конструктивные схемы крупнопанельных зданий. Однослойные панели изготовляются из легких или ячеистых бетонов (шлакобетона, ке-рамзитобетона, пенобетона, газобетона и пр. Они широко применяются в бескаркасных зданиях и при толщине 20 - 40 см могут быть несущими, удовлетворяя требованиям теплозащиты и прочности.
Возможность устройства вертикальных плоскостей на боковых поверхностях рассматриваемых оболочек позволяет использовать их в качестве проходов и бокового освещения. Это значительно расширяет области применения бескаркасных зданий в виде цилиндрических поверхностей.

Привязки нееущйх продольных и торцовых стен в бескаркасных зданиях выбираются так, чтобы обеспечить достаточное опиранне несущи конструкций или Пастила покрытий на стены.
Контроль точности положения ферм. Контроль положения возводимых фундаментных блоков, колонн, подкрановых балок и рельс, стропильных ферм в плане следует осуществлять методом ординат с помощью теодолита. При монтаже стеновых панелей и блоков в бескаркасных зданиях контроль их планового положения следует осуществлять от установочных рисок, смешенных относительно разбивочной оси на определенную величину, с помощью линейки или метра по внутренним граням панелей или блоков.
Технико-экономическими исследованиями установлено, что по ряду показателей при прочих равных условиях каркасные здания уступают крупнопанельным. Их стоимость на 5 - 10 % выше, построечная трудоемкость на 10 - 15 % больше, чем бескаркасных зданий. Несмотря на это, по изложенным выше причинам планировочного и технологического характера, каркасные здания широко применяются во всех странах мира.
Монтаж жилых зданий из объемных блоков.| Монтаж жилого дома методом подъема этажей. Монтаж бескаркасных зданий начинают обычно с установки элементов лестничной клетки, которые образуют жесткое пространственное ядро. Последующие панели пристраивают к лестничной клетке и далее друг к другу в виде жестких пространственных ячеек.
Элементы Пластбау в стенах (а и междуэтажном перекрытии (б. В каркасно-панельных зданиях основной несущей конструкцией служит железобетонный каркас. Он состоит из колонн и горизонтальных связей - ригелей. Плиты перекрытий опираются на ригели, при безригельной схеме - на колонны, в бескаркасных зданиях - на крупные плитные элементы: панели стен, перегородок и перекрытий.

I. Общие сведения. Различают два основных типа зданий: с несущими стенами и каркасные. В каркасных зданиях стены выполняют только ограждающие функции, а все нагрузки, действующие на здание, воспринимаются каркасом.

Элементы каркаса любого здания могут быть разделены на несущие конструкции и связи.

Основное назначение несущих конструкций - восприятие вертикальных нагрузок, действующих на сооружение: собственной массы, полезной нагрузки, давлений мостовых кранов и т п. Чаще всего несущие конструкции представляют собой плоские системы - балки, фермы, рамы, арки и т. д. Как известно, плоские системы могут воспринимать только такие нагрузки, которые действуют в их плоскости. Сооружение, составленное из одних только плоских несущих элементов, расположенных в вертикальных плоскостях, нельзя эксплуатировать: эти элементы неустойчивы, они опрокинутся при небольшом дуновении ветра. В строительной механике такие сооружения называются геометрически изменяемыми в пространстве. Поэтому несущие элементы объединяются между собой в геометрически неизменяемый пространственный каркас при помощи связей.

2. Геометрически неизменяемые системы - это прежде всего шарнирный треугольник и любые конструкции из ряда треугольников, например фермы (см. 10.2). Примером геометрически изменяемой системы является шарнирный четырехугольник, который может изменить свою форму" (превратиться в параллелограмм), а длина всех его стержней останется неизменной (11.1,а).

В строительном деле, как правило, должны применяться конструкции с геометрически неизменяемой схемой.

Четырехугольник из земли, двух стоек и ригеля можно превратить в геометрически неизменяемую систему, поставив так называемые связи - одну или две диагонали (11. 1,6). Если к этой системе присоединить новый узел двумя стержнями (нележащими на одной прямой), то снова получится геометрически неизменяемая конструкция (11.1, о).

3. Проектирование схемы связей основывается на вышеуказанном правиле: создается жесткий блок в виде плоской связевой фермы, к которой при помощи распорок присоединяется каждый новый узел системы (см. 11.3,6). Чтобы обеспечить пространственную геометрическую неизменяемость сооружения, необходимо поставить плоские связи в продольном и поперечном направлениях и в плане (см. 11.3 и 11.4).

В связевых фермах решетка создается из элементов связей, а поясами являются несущие элементы - колонны или пояса ферм и балок. Очень часто применяется крестовая решетка (11.2,а, г), так как при этой системе в каждой панели одна диагональ будет сжата, а другая растянута. Расчет ведется в предположении, что сжатая диагональ выпучилась, а всю поперечную силу воспринимает только растянутая. Поэтому диагонали крестовых связей проверяют только на растяжение, что позволяет выполнить их из легких одиночных уголков большой гибкости и дает экономию.

В последнее время элементы связей выполняют из труб и гнутых профилей, радиус инерции которых много больше, чем уголков, поэтому для связевой фермы стала рациональной треугольная система решетки (11.4 и 11.11).

Оптимальный тангенс угла наклона раскосов близок к единице. Он не должен быть менее I: 2 (и более 2:1), поэтому, если высота связевой фермы больше удвоенной панели, то применяют полураскосную решетку или крестовую со стойками (см. 11,2, в, г).

Усилия в элементах связен обычно небольшие и сечеиия их часто приходится назначать из условия, чтобы гибкость была меньше предельной (см. 6.1).

Элементы связей крепят черными болтами, а в зданиях с тяжелыми кранами и тяжелым режимом работы - монтажной сваркой.

4. Роль связей в зданиях с металлическим каркасом.

I) создание геометрической неизменяемости сооружения;

II) обеспечение устойчивости сжатых элементов (колонн и поясов стропильных ферм) путем уменьшения их расчетной длины;

III) восприятие горизонтальных нагрузок, действующих вне плоскости несущих элементов (давление ветра, торможение кранов);

IV) . выравнивание перегрузки несущих конструкций (например, при поперечном торможении крана ближайшая к крану рама каркаса нагружена больше остальных, связи передают часть перегрузки на соседние рамы), в результате чего повышается общая жесткость сооружения;

V) фиксирование положения собираемых конструкций и обеспечение их устойчивости во время монтажа.

Опыт показал, что здания со слабыми связями имеют недопустимо большие деформации, что ведет к авариям (были известны случаи выпадения стенового заполнения). Много аварий происходило во время монтажа сооружений из-за запаздывания с постановкой связей.

Типы каркасов различаются по следующим признакам:

1. По материалам:

железобетонные каркасы (монолитным, сборным, сборно-монолитным);

металлические каркасы.

2. По устройству горизонтальных связей: с продольным, поперечным, перекрестным расположением ригелей и с непосредственным опиранием перекрытий на колонны (безригельное решение).

3. По характеру статической работы:

рамные с "жесткими" (монолитными) соединениями элементов в узлах (пересечениях) каркаса;

связевые со сварными соединениями узлов, отличающиеся простотой конструктивного исполнения, но по принципу геометрической неизменяемости системы имеющие связи жесткости, устанавливаемые между колоннами и ригелями каркаса;

рамно-связевые с жесткими соединениями узлов в поперечном направлении и сварными соединениями - в продольном направлении.

Каркасный тип здания целесообразен там, где требуются помещения с большой свободной площадью, а также в условиях, когда здание воспринимает большие статические или динамические нагрузки.

Основные размеры здания в плане (общие, пролеты, шаги) устанавливаются между разбивочными осями - продольными и поперечными. В производственных одноэтажных, зданиях расстояние между продольной разбивочной осью (пролет) в соответствии с объемно-планировочными решениями назначают для домов без кранов равными 12, 18 и 24 метров (а для отдельной отрасли также 6 и 9 м), для здания, оборудованного мостовым краном,- 18, 24, 30 м и больше, кратными 6 метров.

Если необходимо по технологическим требованиям допускают для бескрановых зданий пролет величиной 30 метров и больше, кратные 6 метрам, а для крановых зданий - пролеты, равные 12 м.

Шаг колонн - расстояние, измеряемое между соответствующими поперечными разбивочными осями,- в одноэтажных производственных зданиях назначается равным 6 или 12 м (как по крайним, так и по средним рядам) на основании технико-экономических расчетов с учетом технологических требований. При этом в зданиях с железобетонным каркасом с пролетами 12 м, высотой до 6 м рекомендуется применять шаг наружных колонн 6 ж, а в бескрановых зданиях высотой 8,4 м и более и в зданиях высотой 12,6 м и более, оборудованных кранами,- шаг средних колонн, равный 12 м. Необходимо отметить, что до недавнего времени более распространенным был шаг колонн 6 м. Переход на сетки колонн с шагом 12 м (12 X 18, 12 X 24, 12 X 30 м) расширяет планировочные возможности зданий, делает их более универсальными («гибкими»), способствует увеличению производственных площадей, сокращению затрат на изготовление и монтаж конструкций и др.

При 12-метровом шаге колонн несущие конструкции покрытия располагаются как с шагом 12м, так и 6 м. В последнем случае в состав каркаса вводят подстропильные конструкции. При шаге внутренних колонн 12 м шаг колонн в наружных (пристенных) рядах может быть 12 и 6 м. Производственные многоэтажные здания проектируют с шагом колонн 6 метров, с пролетем 6 и 9 метров для нижних этажей и 6-24 метров - для верхних но это зависит от назначения здания.

4. Единая модульная система в строительстве (ЕМС). Координационные оси. Размеры модульные, конструктивные и натурные. Горизонтальные и вертикальные планировочные модули.

ЕМС. Основой для унификации и типизации сельскохозяйственных зданий является Единая модульная система в строительстве (ЕМС) - совокупность правил взаимного согласования размеров зданий и сооружений, а также размеров и расположения их элементов, строительных конструкций, изделий и элементов оборудования на основе применения модулей. Положения модульной координации размеров в строительстве (МКРС) действуют во всех странах СЭВ и регламентируются специальным стандартом.

В СССР и большинстве европейских стран в качестве единого основного модуля принята величина 100 мм, обозначаемая буквой М. Для назначения координационных размеров объемно-планировочных и конструктивных элементов сельскохозяйственных зданий применяются укрупненные модули (мультимодули): ЗМ, 6М, 12М, 15М, ЗОМ, 60М (т. е. 300, 600, 1200, 1500, 3000, 6000 мм). Укрупненные модули применяют до некоторых предельных значений координационных, размеров. В сельскохозяйственных зданиях их принимают: 60М - в плане без ограничения предела; ЗОМ - в плане в пределах до 21000 мм; 15М - в плане в пределах до 12 000 мм; 12М и 6М - в плане в пределах до 7200 мм и по вертикали без ограничения; ЗМ -в плане и по вертикали в пределах до 3600 мм.

Для назначения относительно малых размеров конструктивных элементов и деталей (сечения колонн, балок, перемычек и т. п.), а также толщины плитных и листовых материалов, ширины зазоров между элементами и допусков при изготовлении изделий применяются кроме основного дробные модули (субмодули) 50, 20, 10, 2 и 1 мм, обозначаемые соответственно 1/2М, 1/5М, 3/10М, 1/20М, 1/50М, 1/100М.

Взаимное расположение элементов здания в пространстве устанавливают с помощью трехмерной условной системы взаимно пересекающихся плоскостей - модульной пространственной координационной системы. Линии пересечения координационных плоскостей образуют координационные оси в плане и разрезе, которые определяют членение здания на модульные шаги и высоты этажей, а также расположение основных несущих и ограждающих конструкций. Расстояния между координационными плоскостями и осями кратны основному или некоторым укрупненным модулям. На архитектурно-строительных чертежах поперечные оси обычно обозначают арабскими цифрами, а продольные - заглавными буквами русского алфавита. Порядок маркировки осей: снизу вверх и слева направо по левой и нижней сторонам плана.

Координационные оси. На изображении каждого здания или сооружения указывают координационные оси и присваивают им самостоятельную систему обозначений.

Координационные оси наносят на изображения здания, сооружения тонкими штрихпунктирными линиями с длинными штрихами, обозначают арабскими цифрами и прописными буквами русского алфавита (за исключением букв: Ё, З, Й, О, X, Ц, Ч, Щ, Ъ, Ы, Ь) в кружках диаметром 6 - 12 мм.

Пропуски в цифровых и буквенных (кроме указанных) обозначениях координационных осей не допускаются.

Цифрами обозначают координационные оси по стороне здания и сооружения с большим количеством осей. Если для обозначения координационных осей не хватает букв алфавита, последующие оси обозначают двумя буквами.

Размеры модульные, конструктивные и натурные . Проектное расстояние между координационными осями здания, или условный размер конструктивного элемента его, включающий соответствующие части швов и зазоров, называется номинальным модульным размером . Кроме номинального различают конструктивные и натурные размеры. Конструктивным называют проектный размер конструктивных элементов, строительных изделий и оборудования, отличающийся от номинального на величину нормированного зазора или шва (5, 10, 20 мм и т.д.). Натурный размер - фактический размер детали, конструктивного элемента, оборудования, отличающийся от проектного на величину, находящуюся в пределах допуска.

Вертикальный модуль (т.е. модуль для основных вертикальных размеров) в гражданском строительстве принят равным 30 см, что отвечает высоте двух подступенков лестницы (2х15 см) и блоку кирпичной кладки из четырех рядов.

Горизонтальный модуль зависит от решения зданий и вида применяемых в них конструкций. Жилые дома, здания детских учреждений и больниц характеризуют малыми размерами элементов. Для них горизонтальный модуль принят равными 20 см, что отвечает толщинам внутренних несущих панелей, или равным 40 см, что отвечает толщинами тех же стен из кирпича или крупных блоков.

В современном многоэтажном строительстве широко применяют каркасную конструктивную схему с полным каркасом и самонесущими или навесными стенами и с неполным каркасом и несущими стенами. По роду материалов каркасы в этих зданиях выполняют преимущественно из железобетона, но в малоэтажных каменных зданиях иногда применяют внутренний каркас с кирпичными столбами. Стальной каркас применяют в гражданских и промышленных зданиях при значительной высоте или больших пролетах. Кирпичные столбы внутреннего каркаса устраиваются из полнотелого кирпича на растворах высоких марок. Для увеличения несущей способности столбов применяют поперечное или продольное армирование, в первом случае сетки из проволоки укладывают через 2-4 ряда в швы кладки, во втором - вертикально установленные стержни арматуры снаружи столба связывают хомутами и покрывают защитным слоем раствора.

Железобетонные каркасы разделяются на сборные и монолитные, причем первые являются более индустриальными. Монолитный каркас применяют редко, в уникальных зданиях или по особым технологическим требованиям. Колонны и прогоны в монолитном каркасе, армированные стержнями продольной арматуры и поперечными хомутами, составляют единое целое. Бетонирование каркаса осуществляется в опалубке.

Сборные железобетонные каркасы (рис. 19) являются основным типом каркасов многоэтажных зданий. Этот каркас в гражданских зданиях состоит из одно- или двухэтажных стоек (колонн) -и ригелей таврового или прямоугольного сечения. По высоте стойки соединяются сваркой стальных оголовков колонн между собой или сваркой концов арматурных стержней, выпущенных из тела стоек с последующим замоноличиванием стыка. Стыки стоек при этом располагают в каждом этаже или через этаж на расстоянии 0,6-1 м от уровня пола. Ригели присоединяют к стойкам сбоку с помощью сварки закладных стальных деталей, предусмотренных в этих конструктивных элементах, и с последующей заделкой бетоном.

Рис. 19. Сборный железобетонный каркас
1 - колонна; 2 - стык колонны; 3 - ригель; 4 - стык ригеля с колонной; 5-настил перекрытия

В многоэтажных промышленных зданиях применяют балочную и безбалочную схемы каркасов. Элементами каркаса являются колонны с фундаментами под ними и ригели перекрытий, вместе образующие железобетонные рамы. Сборный железобетонный каркас с балочным ререкрытием проектируют как рамную, рамно-связевую или шарнирно-связевую системы. При рамной системе вертикальные и горизонтальные нагрузки, приходящиеся на здание, воспринимают железобетонные рамы с жесткими узлами. В рамно-связевой системе рамы с жесткими узлами воспринимают только вертикальные усилия, а горизонтальные усилия воспринимают перекрытия, передавая их на поперечные и торцовые стены и лестничные клетки. Если узлы рам имеют не жесткое, а шарнирное крепление, такая система называется шарнирно-связевой, передача нагрузок при этом происходит также, как и в рамно-связевой. Сборные железобетонные каркасы с балочным перекрытием (рис. 20) широко применяют при возведении многоэтажных промышленных зданий. Балочное перекрытие состоит из ригелей (прогонов), опирающихся на консоли колонн, и ребристых плит, уложенных по прогонам. Сборные элементы каркаса соединяются сваркой закладных деталей с последующим замоноличиванием.



Рис. 20. Многоэтажное здание с балочными перекрытиями

При безбалочной схеме (рис. 21) на капители колонн, выполненные в виде усеченной пирамиды квадратного сечения в основании, опирают многопустотные надколонные панели. На эти панели укладывают панели перекрытия. При безбалочной схеме перекрытие получается меньшей высоты, чем при балочной, но требуется больше бетона и стали, кроме того, более трудоемок монтаж.



Рис. 21. Многоэтажное промышленное здание со сборными безбалочными перекрытиями

Лучшие показатели имеют сборно-монолитные безбалочные перекрытия. В этой конструкции капителью служит плоская железобетонная плита с отверстием для колонны. На плиту опираются межколонные многопустотные панели, а на них - пролетные панели. Арматурную сетку, укладываемую по межколонным панелям, сваривают с арматурой пролетных панелей и заполняют бетонной смесью. Недостатком такой конструкции является применение монолитного бетона.

Каркасные гражданские здания. Каркасный, представляющий собой многоярусную пространственную систему из колонн и междуэтажных перекрытий. Несущей основой в таких зданиях служат колонны, ригели и перекрытия, а роль ограждающих элементов выполняют наружные стены. Такой конструктивный тип используют для возведения высотных зданий и там, где необходимы помещения значительных размеров, свободные от внутренних опор.

Каркасному типу зданий присущи следующие схемы:

  • с поперечным расположением ригелей;
  • с продольным расположением ригелей.

Для обеспечения пространственной жесткости зданий требуются специальные меры.

В каркасных зданиях пространственная жесткость обеспечивается:

  • многоярусной рамой, образованной из колонн, ригелей и перекрытий и представляющей геометрически неизменяемую систему;
  • стенами жесткости, расположенными между колон-нами (на каждом этаже);
  • плитами-распорками, уложенными в междуэтажных перекрытиях (между колоннами);
  • стенами лестничных клеток и лифтовых шахт, связанных с конструкциями каркаса;
  • надежным сопряжением элементов каркаса в стенах и узлах.

Типы каркасов различаются по следующим признакам:

1. По материалам:

Железобетонные каркасы (монолитные, сборные, сборно-монолитные);

Металлические каркасы.

2. По устройству горизонтальных связей: с продольным, поперечным, перекрестным расположением ригелей и с непосредственным опиранием перекрытий на колонны (безригельное решение).

3. По характеру статической работы:

Рамные с “жесткими” (монолитными) соединениями элементов в узлах (пересечениях) каркаса;

Связевые со сварными соединениями узлов, отличающиеся простотой конструктивного исполнения. Но по принципу геометрической неизменяемости системы, имеющие связи жесткости, устанавливаемые между колоннами и ригелями каркаса;

Рамносвязевые с жесткими соединениями узлов в поперечном направлении и сварными соединениями в продольном направлении.

Каркасный тип здания целесообразен там, где требуются помещения с большой свободной площадью (например, складские комплексы), а также в условиях, когда здание воспринимает большие статические или динамические нагрузки.

Для зданий повышенной этажности весьма целесообразно использование каркасно-панельной системы. В этом случае здания могут иметь большие свободные от перегородок помещения, что необходимо для общественных зданий.

Здания каркасной конструкции имеют преимущественно общественное назначение В России каркасные здания, имеют основную планировочную сетку размером 6X6 м. Дополнительные параметры - 4,5 и 3 м. Кроме того, для отдельных уникальных зданий используется сетка 6X9 м.Высота этажей имеет градацию: 3; 3,3; 3,6 и 4,2 м.Колонны каркаса могут быть на один и два этажа.Каталогом колонны предусмотрены для двух высот этажей 3,3 и 4,2 м. Колонны имеют поперечное сечение 300X300 ..мм,_ для нижних этажей 400X400 мм. Стыки колонн предусмотрены на уровне верха перекрытий, обычно на высоте 600 мм от верха панели.

Ригели каркаса бывают высотой 450 мм и имеют в нижней части уступы (с двух или с одной стороны) для опирания плит перекрытий. Концы ригелей опирают на консоли колонн, а затем закрепляют сваркой. Таким образом, колонны и ригели каркаса образуют систему многоэтажных поперечных и продольных рам.По наружному периметру здания к колоннам каркаса крепятся навесные панели.Материал панелей этих стен сходен с материалом панелей стен крупнопанельных зданий, но навесные стены более разнообразны по архитектурному и конструктивному решению.Наиболее эффективными из них являются панели из легких и ячеистых бетонов, из алюминия, алюминиевых сплавов и асбестоцемента.



Похожие публикации