Биогеохимический круговорот азота и последствия воздействия на него антропогенной деятельности. Биогеохимические циклы (биогеохимические круговороты) -циклические процессы обмена веществ между различными компонентами биосферы, обусловленные жизнедеятельно

Термин "биогеохимия» предложен русским ученым В.И. Вернадским и означает область науки об обмене веществ между живым и неживым веществом биосферы («био» относится к живым организмам, а "гео" - к горным породам, воздуху и воде). Геохимия изучает химический состав Земли и миграцию элементов между различными частями биосферы: литосферой, гидросферой и атмосферой.

Для нормального существования большинства экосистем и организмов, их населяющих, максимальное значение имеют круговороты таких элементов, как водород, углерод, азот, сера и фосфор, входящих в состав любого живого вещества.

В круговоротах любых химических элементов и веществ различают две части или два «фонда»:

1) резервный фонд - большая масса медленно движущихся в биогеохимическом цикле веществ;

2) обменный (подвижный) фонд - меньшая, но более активная масса вещества, для которого характерен быстрый обмен между живыми организмами и их непосредственным окружением.

В целом биогеохимические циклы обычно подразделяют на два основных типа:

1) круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океане); 2)осадочный цикл с резервным фондом и земной коре. Резервные фонды в атмосфере и гидросфере легко доступны, поэтому такие круговороты относительно устойчивы. Осадочные биогеохимические циклы, как правило, менее стабильны.

Удивительное постоянство процентного содержания различных химических элементов в компонентах экосистемы исторически обусловлено существованием непрерывных и сбалансированных круговоротов веществ, что создает возможность для саморегуляции (гомостаза) системы и поддержания ее устойчивости.

Процессы новообразования органического вещества в ходе фотосинтеза и процессы его разрушения (распада) определяют скорость и сбалансированность круговоротов элементов в биосфере и происходят только за счет поступающей извне солнечной энергии. Следовательно, скорость и направление циклического движения элементов в экосистеме определяются потоками энергии, проходящей через биологическое сообщество.

Обобщенная схема биогеохимических циклов в сочетании с упрощенной схемой потока энергии (рис. 10.1) показывает, как однонаправленный поток энергии приводит в движение круговорот вещества. Обращает на себя внимание тот факт, что химические элементы, вовлеченные в процесс круговорота, многократно проходят один и тот же путь, а энергия течет лишь в одну сторону.

На рис. 10.1 резервный фонд обозначен как фонд элементов питания, а обменный фонд представлен темным кольцом, идущим от автотрофов к гетеротрофам и от них снова к автотрофам. Иногда резервный фонд называют недоступным, а активный обменный фонд - доступным. Например, агрономы обычно измеряют плодородие почвы, оценивая концентрацию в почве тех форм элементов питания, которые непосредственно доступны для растений.

Обменный фонд образуется за счет веществ, которые возвращаются в круговорот двумя основными путями - либо в результате прижизненных выделений во внешнюю среду продуктов метаболизма животными и растениями, либо при разрушении (минерализации) мертвого органического вещества (детрита) микроорганизмами.

Влияние человека на биогеохимические круговороты заключается в том, что при антропогенном вмешательстве эти процессы могут перестать быть замкнутыми и в одних местах боиосферы может возникнуть недостаток, а в других - избыток каких-либо веществ. В конечном счете меры по охране природных ресурсов должны быть направлены на предотвращение нарушений цикличности, т.e. сбалансированности круговоротов важнейших элементов в биосфере. Знание особенностей биогехимических циклов - необходимое условие рационального использования природных ресурсов и сохранения природных экосистем.

Рис. 10.1. Схема биогеохимического цикла на фоне упрощенной схемы потока энергии:

Р G - валовая первичная продукция; Р N - чистая первичная продукция (может быть потреблена гетерофами в самой системе или же экспортирована); Р - вторичная продукция, R 1 -дыхание автотрофов (растений); R 2 - дыхание гетеротрофов (животных и бактерий)

Любую экосистему можно представить в виде ряда блоков, через которые проходят различные вещества. В круговоротах минеральных веществ в экосистеме, как правило, участвуют три активных блока: живые организмы, мертвый органический детрит, доступные неорганические вещества в среде обитания.

Рассмотрим биогеохимический циклы азота, фосфора и серы. Биогеохимический цикл азота (биогенного элемента, входящего в состав белков и нуклеиновых кислот) может служить примером очень сложного хорошо сбалансированного цикла газообразного вещества. Биогеохимический цикл фосфора - осадочный цикл с менее совершенной регуляцией круговорота фосфора.

Биогеохимический круговорот серы служит примером функциональной связи между атмосферой, водой и земной корой, так как сера активно циркулирует в каждом из этих «резервуаров» и между ними. В круговoротax азота и серы ключевую роль играют микроорганизмы.

Круговорот азота , включающий как газовую, так и минеральную фазу, несмотря на большое число участвующих в нем организмов, обеспечивает быструю циркуляцию азота в различных экосистемах (рис. 10.2).

Рис. 10.2 . Схема круговорота азота (серый прямоугольник – резервный фонд азота)

Основной источник и резервуар азота - атмосфера, масса которой на 79% состоит из этого элемента. Участие живых организмов в круговороте азота подчинено строгой иерархии: только определенные виды микроорганизмов (бактерий) осуществляют биохимические процессы трансформации соединении азота на отдельных ключевых этапах этого цикла.

Большинство организмов, обитающих в биосфере, непосредственно не может использовать газообразный молекулярный азот (N 2). Растения усваивают азот только в составе нитрат - ионов (NО 3 -) или ионов аммония (NH 4 +). Нитраты образуются в основном в результате жизнедеятельности микроорганизмов - азотфиксаторов , к которым относятся симбиотические бактерии рода Rhizobium, живущие в клубеньках на корнях бобовых растений, бактерии рода Azotobacter, обитающие в почве; и цианобактерии (сине-зеленые). Все микроорганизмы - азотофиксаторы способны фиксировать атмосферный азот благодаря очень сложному обмену веществ, включающему в качестве катализаторов молибден и гемоглобин. Симбиотические микроорганизмы-азотофиксаторы проникают в ткани корневой системы бобовых растений. Растения обеспечивают симбиотических бактерий местообитанием и пищей (сахарами), а те поставляют растению органический азот, который они синтезируют из газообразного азота. Свободно живущие не симбиотические микроорганизмы - азотофиксаторы (Azotobacter в цианобактерии) также усваивают газообразный азот и переводят его в органическую форму. При этом азот включается в синтезируемые белковые молекулы. После отмирания азотофиксирующих бактерий и минерализации органического вещества азот в нитратной форме (NO 3 -) обогащает почву.



Животные могут поглощать азот только в составе органических веществ растительного или животного происхождения. По типичным пищевым цепям (растения - травоядные - хищники) органический азот передается от микроорганизмов - азотофиксаторов растениям и всем другим организмам экосистемы. В почвах происходят процессы аммонификации (образования ионов аммония) и нитрификации (образования нитрат - ионов), состоящие из ряда последовательных реакций, в ходе которых при участии разных групп микроорганизмов происходит разрушение мертвого органического вещества.

Молекулярный азот возвращается в атмосферу и биогеохимический цикл азота замыкается в процессе жизнедеятельности бактерий - денитрификаторов рода Pseudomonas, восстанавливающих нитраты до свободного азота и кислорода в бескислородных (анаэробных) условиях.

Нитраты постоянно образуются из молекулярного азота в небольших количествах без участия микроорганизмов-азотфиксаторов при электрических грозовых разрядах в атмосфере. Затем эти нитраты выпадают с дождями на поверхность почвы. Еще одним источником поступления атмосферного азота в биогеохимический цикл -вулканы, компенсирующие потери азота, выключенного из круговорота при осаждении его на дно океанов.

Для того чтобы сопоставить масштабы различных процессов поступления атмосферного азота в биогеохимический цикл, необходимо иметь в виду следующее: среднегодовое поступление нитратного азота абиотического происхождения (грозовые разряды) из атмосферы в почву не превышает 10 кг/га, свободные микроорганизмы- азотофиксаторы вносят до 25 кг/га, в то время как симбиотические азотофиксирующие бактерии Rhizobium в среднем продуцируют до 200 кг/га.

Преобладающая часть азота, содержащегося в органическом веществе, перерабатывается денитрифицирующими бактериями в газообразный азот (N 2) и вновь возвращается в атмосферу. Лишь около 10% минерального азота поглощается из почвы высшими растениями и оказывается в распоряжении многоклеточных организмов.

Круговорот фосфора. Фосфор входит в состав богатых энергией органических веществ - аденознитрифосфата (АТФ) и аденозиндифосфата (АДФ), являющихся переносчиками и аккумуляторами энергии в клетках растений и животных. Основным источником фосфора для растений служат фосфат-ионы (РО 4 -). Растения поглощают фосфат-ионы из окружающей среды (почвы или воды) и в процессе биосинтеза включают фосфор в состав оpганических веществ, образующих биомассу растений. Животные, поедая растения, получают фосфор в органической форме. Таким образом, переводя фосфор из минеральной формы в органическую, растения делают его доступным для животных. Круговорот фосфора в биосфере связан с процессами обмена веществ в растениях и животных. Этот важный биогенный элемент, содержание которого наземных частях растений и водорослях варьирует от 0.01 до 0,1%, а у животных от 0.1 % до нескольких процентов, в процессе циркуляции постепенно переходит из органических соединений в фосфаты, которые снова могут использоваться растениями (рис 10.3).

Рис. 10.3. Схема круговорота фосфора (серый прямоугольник - резервный фонд фосфора)

Если сравнить содержание фосфора в живом и неживом веществе биосферы, то окажется что диспропорция очень велика. Поэтому фосфор относится к числу наиболее дефицитных биогенных макроэлементов, определяющих развитие жизни.

Естественный биогеохимический круговорот фосфора в биосфере не сбалансирован. Основные запасы фосфора содержатся в горных породах (апатиты, фосфориты), из которых в процессе выщелачивания водорастворимые фосфаты (РО 4 3-) попадают в наземные и водные экосистемы. Попадая в экосистемы суши, фосфор поглощается растениями из водного раствора в виде неорганического фосфат - иона (РО 4 3-) и включается в состав различных фосфорорганических соединений. По пищевым цепям фосфорсодержащее органическое вещество переходит от растений к другим организмам экосистемы. Химически связанный фосфор попадает с остатками растений и животных в почву, где подвергается воздействию микроорганизмов и превращается в минеральные соединения фосфора, доступные растениям в ходе фотосинтеза. Вынос фосфатов из наземных экосистем в континентальные водоемы обогащает последние фосфором. Речной сток ежегодно выносит в Мировой океан около 2 млн. т фосфора.

В морских экосистемах минеральный фосфор переходит в состав фитопланктона, служащего пищей другим организмам моря, и накапливается в тканях морских животных, например, рыб. Часть органических соединений фосфора мигрирует по пищевым цепям в пределах небольших глубин, другая часть опускается на большие глубины в процессе осаждения мертвого органического вещества. Отмершие остатки организмов приводят к накоплению фосфора на разных глубинах. Отсюда следует, что фосфор, попадая в водоемы тем или иным путем, насыщает, а нередко и перенасыщает их экосистемы. Обратное движение фосфора из Мирового океана на сушу и в наземные водоемы ограничено (вылов рыб и других организмов человеком) и не компенсирует вынос фосфора с суши. И только в значительных временных интервалах, когда в процессе тектонического движения земной коры дно океанов становится сушей, происходит замыкание этого биогеохимического цикла.

Круговорот серы . Существуют многочисленные газообразные соединения серы, например сероводород (H 2 S) и сернистый ангидрид (SO 3).

Однако преобладающая часть круговорота этого элемента имеет осадочную природу и происходит в почве и воде.

Подробная схема круговорота серы приведена на рис. 10.4.

Рис 10.4. Схема круговорота серы

Основной источник серы, доступный живым организмам, - сульфаты (SO 4 2-). Многие сульфаты растворимы в воде, и это определяет доступность неорганической серы для растений, так как многие элементы (в том числе и сера) могут поступать в живые организмы только в растворенном виде. Растения, поглощая сульфаты, восстанавливают их и вырабатывают незаменимые серосодержащие аминокислоты (метионин, цистеин, цистин), играющие важную роль в создании третичной (пространственной) структуры белков. Животные и микроорганизмы, потребляя растительную биомассу в пищу, усваивают серосодержащие органические соединения.

При разложении мертвого органического вещества (опавшая листва, погибшие организмы, продукты выделения) гетеротрофными бактериями сера вновь переходит в неорганическую форму (преимущественно в виде сероводорода H 2 S). Некоторые бактерии могут вырабатывать сероводород из сульфатов в анаэробных (бескислородных) условиях. Другая немногочисленная группа бактерий может восстанавливать сероводород до элементарной серы (S).

С другой стороны, существуют бактерии, опять окисляющие сероводород до сульфатов, благодаря чему вновь увеличивается запас серы в доступной для растений форме. Подобные бактерии называются хемосинтезирующими , так как они синтезируют органические вещества за счет энергии окисления простых химических веществ (в данном случае сероводорода). Этим обстоятельством они отличаются от фотосинтезирующих организмов, создающих органические вещества за счет энергии света.

Последняя фаза круговорота серы полностью осадочная (проходящая в осадочных породах). Она характеризуется выпадением в осадок этого элемента в анаэробных условиях в присутствии железа. Таким образом, процесс заканчивается медленным и постепенным накоплением серы в глубоко лежащих осадочных породах.

В целом экосистеме, по сравнению с азотом и фосфором, требуется значительно меньше серы. Поэтому сера реже является лимитирующим фактором для развития растений и животных. Вместе с тем круговорот серы относится к ключевым в общем процессе создания разложения органического вещества биомассы в биосфере. К примеру, при образовании в осадках сульфидов железа фосфор из нерастворимой формы переходит в растворимую и становится доступным для фотосинтезирующих организмов. Это служит наглядным подтверждением того, что один круговорот связан с другим и регулируется им.

Круговорот углерода . Углерод в качестве важнейшего структурного элемента входит в состав любого органического вещества, поэтому его круговорот во многом определяет интенсивность образования и разрушения органического вещества в различных частях биосферы. В природе углерод существует в двух наиболее распространенных минеральных формах - в виде карбонатов (известняков) и в виде подвижной формы углекислого газа (yглекислоты, СО 2). В биохимическом круговороте углерода атмосферный фонд углекислого газa относительно невелик (711 млрд. т) в сравнении с запасами углерода в океанах (39000 млрд. т), в ископаемом топливе (12000 млрд. т) и наземных экосистемах (3100 млрд. т).

Приблизительно 93 % углекислого газа находится в океане, который способен удерживать намного больше этого химического соединения, чем другие резервуары. Большая часть углекислоты, поступающей из атмосферы в поверхностные слои морской воды, взаимодействует с водой с образованием угольной кислоты и продуктов ее диссоциации. Таким образом, в океане постоянно существует карбонатная система - сумма всех неорганических растворенных соединений углерода (углекислый газ СО 2 , угольная кислота Н 2 СО 3 и продукты ее диссоциации).

Все эти соединения связаны между собой и могут превращаться друг в друга в процессе химических реакций при изменении условий окружающей среды. Например, в случае увеличения кислотности воды (при низких значениях рН) молекулы угольной кислоты распадаются на воду Н 2 О и углекислый газ СО 2 , при этом последний может удаляться из океана в атмосферу. Щелочные условия, наоборот, способствуют образованию карбонат -ионов (СОз 2-), труднорастворимых карбонатов кальция (СаСО 3) и магния (MgCO 3), которые в виде осадка опускаются на дно и на какое-то время выводят углерод из круговорота в океане.

Как видно из рис. 10.5, содержащийся в атмосфере или гидросфере углерод (в виде углекислого газа СО 2) в процессе фотосинтеза включается в органическое вещество растений и далее по пищевой цепи попадает в организмы животных и микроорганизмы. Обратный процесс перехода углерода из органической формы в минеральную происходит во время дыхания всех организмов животных, и растений (окисление органического вещества до углекислого газа (СО 2) и воды (Н 2 О)). Процесс высвобождения углекислого газа из органического вещества происходит не сразу, а постепенно, частями на каждом трофическом уровне. В почве очень часто биогеохимический цикл углерода замедляется, так как органические вещества минерализуются не полностью, а трансформируются в органические комплексы - гумус.

Особенность функционирования наземных экосистем - значительное и относительно долговременное накопление органической формы углерода в биомассе растений и животных, а также в гумусе. Таким образом, биомасса наземных экосистем также может рассматриваться как значительный запас углерода в биосфере.

Рис. 10.5. Схема круговорота углерода (серые прямоугольники - резервные фонды углерода)

Океаническая ветвь биогеохимического цикла углерода имеет свои особенности, которые, учитывая значительный объем содержащегося в воде углерода, определяют важную роль Мирового океана в круговороте данного элемента. В водной среде в отличие от наземных экосистем основными фотосинтезирующими организмами являются одноклеточные микроскопические водоросли, парящие в водной толще (фитопланктон).

Жизнедеятельность организмов фитопланктона достаточно активна и сопровождается как накоплением органического углерода в виде биомассы, так и выделением растворенного органического углерода. Животные и бактерии потребляют эти органические формы углерода.

Особенностью функционирования водной экосистемы является быстрый переход органических форм углерода по пищевой цепи от одних организмов к другим. В отличие от наземных экосистем в океане не образуются значительные запасы органического углерода в биомассе живых организмов. Большая часть органического углерода в гидросфере вновь потребляется и в конце концов окисляется до минеральной формы - углекислого газа (СО 2). Другая часть мертвого органического вещества (детрит) под действием силы тяжести оседает в глубокие слои водной толщи и откладывается на дне, где может долгое время сохраняться в виде органических осадков.

Небольшая часть органического вещества и содержащегося в нем углерода, по терминологии В.И. Вернадского, ускользает от круговорота и «уходит в геологию» - в отложения в виде торфа, угля, нефти и известняка в водных экосистемах.

Современный баланс углекислого газа в атмосфере представлен в табл. 10.1.

Таблица 10.1

Ежегодный баланс СО 2 в атмосфере

Источник: Тарко А.М. Устойчивость биосферных процессов и принципов Ле Шателье // Доклады РАН. 1995. Т. 343. № 3. С. 123.

Таким образом, около из 6,41 млрд. т углекислого газа, ежегодно выбрасываемых промышленностью, 3,3 млрд. т, т.е. более 50% остается и атмосфере. За последние 150 лет это уже привело к увеличению содержания углекислоты в атмосфере более чем на 25% и вызвало стимуляцию парникового эффекта. В свою очередь изменение климатического режима Земли может привести и уже приводит к глобальному изменению климата.

В целом в биосфере в постоянном круговороте находится около 0,2% мобильного запаса углерода. Углерод биомассы обновляется за 12 лет, атмосферы - за 8 лет, что подтверждает высочайшую сбалансированность биогеохимического цикла углерода.

Контрольные вопросы и задания.

1. Что называется биогеохимическими циклами и как они связаны с экосистемами?

2. Охарактеризуйте резервный и обменный фонд в круговороте химических элементов.

3. Укажите блоки экосистем, через которые проходят биогеохимические циклы элементов.

4. В круговороте каких биогенных элементов ключевая роль принадлежит микроорганизмам?

5. Для каких элементов атмосфера является резервным фондом?


ЭКОЛОГИЯ ПОПУЛЯЦИЙ

Каждый биологический вид, существующий в природе, - это сложный комплекс внутривидовых групп организмов с однотипными чертами строения, физиологией и образом жизни. Такими внутривидовыми группами организмов являются популяции.

Популяция - группа организмов одного вида, способная поддерживать свою численность длительное время, занимающая определенное пространство и функционирующая как часть биотического сообщества экосистемы

Биотическое сообщество представляет собой совокупность популяций организмов разных видов, функционирующих как целостная система в определенном физико-географическом пространстве среды обитания.

Приспособительные возможности у популяции значительно выше, чем у слагающих ее индивидов. Популяция как биологическая единица обладает определенной структурой и функциями.

Популяция обладает биологическими свойствами , присущими как популяции в целом, так и составляющим ее организмам, и групповыми свойствами , проявляющимися только в целой группе. К биологическим свойствам популяции относятся, в частности, рост и участие в круговороте веществ. В отличие от биологических, групповые свойства: рождаемость, смертность, возрастная структура, распределение в пространстве, генетическая приспособленность и репродуктивная непрерывность (т.е. вероятность оставления потомков на протяжении длительного периода времени) - могут характеризовать только популяцию в целом.

Ниже представлены основные показатели популяции.

Плотность популяции - это численность популяции, отнесенная к единице пространства. Ее обычно измеряют и выражают числом организмов (численность популяции) или суммарной биомассой организмов (биомассой популяции) на единицу площади или объема, например, 500 деревьев на 1 га, 5 млн. микроводорослей на 1 м 3 воды или 200 кг рыбы на 1га поверхности водоема.

Иногда бывает важно различить удельную , или экологическую плотность (численность или биомассу на единицу обитаемого пространства, т. е. фактически доступного для организмов конкретной популяции) и среднюю плотность (величину популяции, отнесенную к единице пространства в географических пределах обитания популяции). Например, средняя плотность лесных лягушек - это их численность, отнесенная к площади лесного массива. Однако эти животные обитают только в заболоченных участках леса, площади которых учитываются при расчете удельной плотности популяции.

Плотность популяции не является постоянной величиной - она изменяется с течением времени в зависимости от условий обитания, сезона года и т. д. Распределение организмов в пространстве, занимаемом популяцией, может быть случайным, равномерным и групповым. Чаще всего в природе встречаются различного рода скопления организмов одного вида (групповое распределение: семейные группы и стаи у животных, групповые заросли у растений).

Наиболее полное представление о плотности популяции дает комплексное использование показателей: численность особей хорошо характеризует их среднюю удаленность друг от друга; биомасса - концентрацию живого вещества; калорийность - количество связанной в организмах энергии. Как правило, плотность популяции растений выше, чем плотность популяции травоядных животных на той же территории. Чем крупнее организмы, тем больше их биомасса.

Плотность - одно из важнейших свойств популяции. От плотности популяции зависят дыхание, питание, размножение и многие другие функции отдельных организмов популяции. Чрезмерная плотность популяции ухудшает условия ее существования, снижая обеспеченность организмов пищей, водой, жизненным пространством и т. д. Отрицательно влияет на существование популяции и недостаточная ее плотность, которая затрудняет выбор особей противоположного пола, защиту популяции от хищников и т.д. (см. подробнее о массовых и групповых эффектах в лекции 6).

Существует ряд механизмов поддержания плотности популяций на нужном уровне. Главный из них - саморегуляция численности популяции по принципу обратной связи с количество и ограниченных жизненных ресурсов, в частности, пищи. Так, когда пищи становится меньше, рост особей замедляется, смертность возрастает, половая зрелость (т. е. способность к размножению) наступает позже, и в результате численность популяции и ее плотность снижается. Улучшение условий существования сопровождается я изменениями противоположного характера, и плотность популяции возрастает до определенного предела. Численность популяции может колебаться вследствие миграции, смены поколений, появления новых особей (благодаря рождению и вселению из других популяций) или в результате гибели. Изучение динамики численности популяции весьма важно для предсказания вспышек численности организмов вредителей или промысловых животных.

Численность популяции определяется в основном двумя противоположными явлениями - рождаемостью и смертностью.

Рождаемость - это способность популяции к увеличению численности. Она характеризует появление на свет новых организмов в процессе: рождения у животных, прорастания семян у растений, образования новых клеток в результате деления у микроорганизмов. Общее число новых молодых особей (), появившихся в популяции за единицу времени (Δt), называют абсолютной (общей) рождаемостью . Для сравнения рождаемости разных популяций используется понятие удельной рождаемости (b), выраженной числом новых особей на одну особь в единицу времени:

Так, для популяций человека в качестве показателя удельной рождаемости используют количество новорожденных детей, родившихся за 1 год на 1 тыс. населения.

Максимальная (потенциальная) рождаемость - это теоретический максимум скорости появления новых особей в идеальных условиях (когда скорость размножения не снижается под действием лимитирующих экологических факторов). Максимальная рождаемость - величина постоянная для данной популяции. В реальных (природных) условиях существования популяции уровень рождаемости определяется различными факторам среды, которые ограничивают скорость появления новых особей. Поэтому для оценки динамики численности популяции используют понятие экологической (реализованной) рождаемости , представляющей увеличение числа особей в популяции в конкретных условиях среды обитания. Экологическая рождаемость - величина непостоянная и сильно варьирует в зависимости от плотности популяции и условий среды обитания.

Различие между максимальной и реализованной рождаемостью можно проиллюстрировать следующим примером. В опытах с мучным хрущаком эти жучки отложили 12 000 яиц (максимальная рождаемость), из которых вылупились только 773 личинки (или 6%)- величина реализованной рождаемости. В общем, для биологических видов, которым не свойственна забота о потомстве (например, многие насекомые, рыбы, земноводные), характерна высокая потенциальная рождаемость и низкая реализованная рождаемость.

Смертность - количество особей в популяции, погибших за определенный период. Понятие смертности противоположно понятию рождаемости. Общее число погибших особей (ΔN) за единицу времени (Δt) называется абсолютной (общей) смертностью. Смертность можно выразить числом особей погибших в единицу времени в расчете на одну особь - удельная смертность (d):

Экологическая (реализованная) смертность - число погибших особей в конкретных природных условиях . Как и экологическая рождаемость, она не постоянна и зависит or особенностей окружающей среды. Теоретическая минимальная смертность - величина постоянная, характеризующая гибель особей (от старости) в идеальных условиях среды (т. е. в отсутствие лимитирующего влияния факторов среды обитания). В конкретных условиях скорость убывания численности популяции определяется гибелью от хищников, полезней и старости.

Часто при описании динамики численности популяции используют понятие выживаемости, т. е. величины, обратной смертности. Если смертность d , то величина выживаемости 1 - d .

Как и рождаемость, смертность и. соответственно, выживаемость у многих организмов в значительной степени варьируют с возрастом. В связи с этим большое значение имеет определение удельной смертности для разных возрастных групп, поскольку это позволяет экологам выяснить механизмы, определяющие общую смертность в популяции. Продолжительность жизни особей популяции можно оценить, используя кривые выживания (рис. 11.1) Откладывая по oси абсцисс возраст особи как процент от общей продолжительности жизни, а по оси ординат - число особей доживших до конкретного возраста, можно сравнить кривые выживания для видов, продолжительность жизни особей которых значительно различается.

Рис 11.1. Типы кривых выживания; 1 - дрозофила; 2 - человек; 3 - пресноводная гидра; 4 - устрица.

Кривые выживания подразделяются на три общих типа (см. риc. 11.1)

Первый тип (выпуклые кривые 1 и 2) характерен для таких видов в популяции которых наибольшая смертность приходится на конец жизни, т. е. смертность почти до конца жизненного цикла остается низкой и резко повышается только у старых особей. Большинство особей одной популяции имеют примерно одинаковую продолжительность жизни, например, крупные животные.

Другой крайний вариант (сильновогнутая кривая 4) соответствует высокой смертности на ранних стадиях жизненного цикла и повышению выживаемости более взрослых стадий. Этот тип смертности свойственен большинству растений и животных. Максимальная скорость гибели характерна для личиночной фазы развития или в молодом возрасте у животных, а также у многих растений в стадии прорастания семян и всходов. При достижении взрослого состояния организмы становятся более устойчивыми к неблагоприятным воздействиям экологических факторов, и их смертность значительно снижается (и увеличивается выживаемость). Так, при развитии личиночных стадий рыб до половозрелого состояния взрослых особей, доживает, как правило, не более 1...2 % oт общего количества выметанных икринок. У насекомых до половозрелого состояния доживает еще меньше: oт 0,3 до 0,5% от общего количества отложенных яиц.

К промежуточному типу (линия 3) относятся кривые выживания для тех видов, у которых удельная выживаемость для каждой возрастной группы более или менее одинакова (пресноводная гидра). Вероятно, в природе почти не существует популяций, у которых выживаемость постоянна на протяжении всего жизненного цикла.

Форма кривой выживания связана со степенью заботы о потомстве и другими способами защиты молоди. Так, кривые выживания пчел и дроздов (которые заботятся о потомстве) значительно менее вогнуты, чем у кузнечиков и сардин (которые не заботятся о потомстве).

Возрастная структура популяции - это соотношение в популяции особей разного возраста.

Возрастной состав является важной характеристикой популяции, которая влияет как на рождаемость, так и на смертность. Большинство популяций в природе состоит из особей разного возраста и пола.

Упрощенно в популяции можно выделить три экологические возрастные группы:

предрепродуктивная - молодые особи, еще не достигшие половой зрелости, т. е. не способные участвовать в размножении;

репродуктивная - половозрелые особи, способные участво­вать в размножении;

пострепродуктивная - старые особи, утратившие способность участвовать в размножении.

Отношение этих возрастов к общей продолжительности жизни в популяции сильно варьирует у разных видов. На количественное соотношение разных возрастных групп в популяции влияют общая продолжительность жизни, время достижения половой зрелости, интенсивность размножения, смертность в разных возрастах. В свою очередь соотношение разных возрастных групп в популяции определяет ее способность к размножению в данный момент и показывает, чего можно ожидать в будущем. Изменение соотношения численности основных возрастных групп в популяциях графически изображается в виде возрастных пирамид (рис. 11.2). В быстрорастущей популяции значительную долю составляют молодые особи (рис. 11.2, а) популяции, численность которой не меняется со временем, возрастной состав более равномерный (рис. 11.2, б), а в популяции, численность которой снижается, будет увеличиваться доля старых особей (рис. 11.2, в).

Рис. 11.2 . Три типа возрастных пирамид, характеризующие популяции

с высокой (а ), умеренной (б ) и малой (в ) относительной численностью

молодых особей (в % от общей численности популяции):

1 - предрепродуктивная, 2 - репродуктивная, 3 - пострепродуктивная возрастная группа

Рост популяции и кривые роста . Если рождаемость в популяции превышает смертность, то наблюдается рост численности популяции.

Каждой популяции и каждому виду в целом свойствен биотический потенциал - максимальная теоретически возможная скорость роста (r ) популяции, представляющая собой разность между удельной рождаемостью (b ) и удельной смертностью (d ):

r = b-d.

Увеличение численности популяции может быть описано кривыми роста двух основных типов - J-образной кривой (экспоненциальный рост) и S-образной кривой (затухающий рост).

Экспоненциальный рост численности популяции характеризуется J-образной кривой роста и происходит когда пищевые пространственные и другие важные жизненные ресурсы популяции находятся в избытке, а смертность с возрастанием численности особей не увеличивается (рис. 11.3).

Уравнение J-образной кривой роста имеет вид

где N - численность популяции; t- время; r - константа скорости роста численности популяции, связанная с максимальной скоростью размножения особи данного вида (биотический потенциал).

Лекция 12 -2011

Биогеохимические циклы

Биологический круговорот веществ представляет собой совокупность процессов поступления химических организмов в живые организмы, биохимического синтеза новых сложных соединений и возвращение элементов в почву, атмосферу и гидросферу

Абиогенный и биологический круговороты тесно переплетаются, образуя общепланетарный геохимический круговорот и систему локальных круговоротов вещества. Таким образом, за миллиарды лет биологической истории нашей планеты сложились великий биогеохимический круговорот и дифференциация химических элементов в природе, который является основой нормального функционирования биосферы. То есть в условиях развитой биосферы круговорот веществ направляется совместным действием биологических и геологических факторов. Соотношение между ними может быть разным, но действие – обязательно совместным! Именно в этом смысле употребляются термины биогеохимический круговорот веществ и биогеохимические циклы.

Биологический круговорот не является полностью компенсированным замкнутым циклом.

Биогеохимическое значение процессов, впервые показал В.В. Докучаев. Далее оно было раскрыто в трудах В.И. Вернадского, Б.Б. Полынова, Д.Н. Прянишникова, В.Н. Сукачева, Л.Е. Родина, Н.И. Базилевич, В.А. Ковды и других исследователей.

Прежде чем мы приступим к изучению природных биологических круговоротов химических элементов, необходимо познакомиться с наиболее часто употребляемыми терминами.

Биомасса – масса живого вещества, накопленная к данному моменту времени.

Фитомасса (или биомасса растений0 – масса живых и отмерших, но сохранивших свое анатомическое строение к данному моменту организмов растительных сообществ на любой конкретной площади или на планете в целом.

Структура фитомассы - соотношение подземной и надземной частей растений, а также однолетних и многолетних, фотосинтезирующих и нефотосинтезирующих частей растений.

Опад – количество органического вещества растений, отмерших в надземных и подземных частях на единице площади за единицу времени.

Подстилка – масса многолетних отложений растительных остатков разной степени минерализации.

Прирост – масса организма или сообщества организмов, накопленная на единице площади за единицу времени.

Истинный прирост – отношение величины прироста к величине опада за единицу времени на единице площади.

Первичная продукция – масса живого вещества, создаваемая автотрофами (зелеными растениями) на единице площади за единицу времени.

Вторичная продукция – масса органического вещества, создаваемая гетеротрофами на единице площади за единицу времени.

Емкость биологического круговорота – количество химических элементов, находящихся в составе массы зрелого биоценоза (фитоценоза).

Интенсивность биологического круговорота – количество химических элементов, содержащихся в приросте биомассы на единицу площади в единицу времени.

Скорость биологического круговорота – промежуток времени, в течение которого элемент проходит путь от поглощения его живым веществом до выхода из состава живого вещества.

По Л.Е. Родину и Н.И. Базилевич (1965), полный цикл биологического круговорота элементов на суше слагается из следующих составляющих:

    Поглощение растениями из атмосферы углерода, а из почвы – азота, зольных элементов и воды, закрепление их в телах растительных организмов, поступление в почву с отмершими растениями или их частями, разложение опада и высвобождение заключенных в них элементов.

    Поедание частей растений питающимися ими животными, превращение их в телах животных в новые органические соединения и закрепление части из них в животных организмах, последующее поступление их в почву с экскрементами животных или с их трупами, разложение и тех и других и высвобождение заключенных в них элементов.

    Газообмен между растениями и атмосферой (в том числе, почвенным воздухом).

    Прижизненные выделения надземными органами растений и их корневыми системами некоторых элементов непосредственно в почву.

Структура биосферы в самом общем виде представляет собой два крупнейших природных комплекса первого ранга – континентальный и океанический. В современную эпоху суша в целом является элювиальной системой, океан – аккумулятивной системой. История «геохимических отношений» между океаном и сушей отражена в химическом составе почв и океанических вод. Элементы, являющиеся основой жизни – Si, Al, Fe, Mn, C, P, N, Ca, K – аккумулируются в почве, а H, O, Na, Cl, S, Mg – составляют химическую основу океана.

Растения, животные и почвенный покров Мировой суши образуют сложную систему. Связывая и перераспределяя солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие биофильные элементы, эта система постоянно формирует новую биомассу и генерирует свободный кислород.

В океане существует вторая система (водные растения и животные), выполняющая на планете те же функции связывания солнечной энергии, углерода, азота, фосфора и других биофилов путем образования биомассы, высвобождения кислорода в атмосферу.

Растения, а через пищевые цепи и связанные с ними животные и бактерии строят свои ткани, используя многие химические элементы и их соединения. Среди важнейших из них макроэлементы– H, O, N, P, S, Ca, K, Mg, Si, Al, Mn, а также микроэлементы I, Co, Cu, Zn, Mo и др. При этом происходит избирательная селекция легких изотопов углерода, водорода, кислорода, азота и серы и реже более тяжелых.

В течении всей своей жизни и даже после смерти живые организмы суши, водной и воздушной среды, находятся в состоянии непрерывного обмена с окружающей средой. При этом суммарная масса продуктов прижизненного обмена организмов и среды (метаболитов) в несколько раз превышают биомассу живого вещества..

Индивидуальная значимость того или иного химического элемента оценивается коэффициентом биологического поглощения, который определяется отношением содержания элемента в золе растений (по массе) к содержанию того же элемента в почве (или в земной коре).

В 1966 году В.А. Ковда предложил использовать для характеристики средней продолжительности общего цикла углерода отношение учтенной фитобиомассы к годичному фотосинтетическому приросту фитомассы. Этот коэффициент характеризует среднюю продолжительность общего цикла синтеза-минерализации биомассы в данной местности (или на суше в целом). Расчеты показали, на суще этот цикл укладывается в период от 300-400 до 1000 лет. Соответственно, с этой средней скоростью идет освобождение минеральных соединений, связанных в биомассе, образование и минерализация гумуса в почве.

Для общей оценки биогеохимического значения минеральных компонентов живого вещества биосферы В.А. Ковда предложил сопоставлять запас минеральных веществ биомассы, а также количество минеральных веществ, ежегодно вовлекаемых в оборот с приростом и опадом, с годовым химическим стоком рек. Оказалось, что эти величины сопоставимы. А это означает, что большая часть веществ, растворенных в речных водах, прошла через биологический круговорот системы растения-почвы, до того, как она влилась в миграцию с водой в направлении океана или внутриматериковых впадин.

Индексы биогеохимического круговорота очень сильно варьируют в различных климатических условиях, под покровом различных растительных сообществ, при различных условиях естественного дренажа, поэтому Н.И. Базилевич и Л.Е. Родин предложили рассчитывать дополнительный индексы разложения фитомассы - коэффициент, характеризующий интенсивность разложения опада и длительность сохранения подстилки в условиях данного биогеоценоза, равный отношению массы подстилки к массе годичного опада. По данным этих исследователей наибольшие его значения в тундре и болотах севера, а наименьшие (около 1) – в степях и полупустынях.

Б.Б. Полынов предложил рассчитывать индекс водной миграции равный отношению количества элемента в минеральном остатке выпаренной речной или грунтовой воды к содержанию того же химического компонента в горных породах (или земной коре). Расчет индексов водной миграции показал, что наиболее подвижными мигрантами в биосфере являются хлор, сера, бор, бром, йод, кальций, натрий, магний, фтор, стронций, цинк, уран, молибден. Наименее подвижные – кремний, алюминий, железо, калий, фосфор, барий, марганец, рубидий, медь, никель, кобальт, мышьяк, литий.

Ненарушенные биогеохимические циклы имеют почти круговой, т.е. почти замкнутый характер. Степень воспроизводства (повторяемости) циклов в природе очень высока (по данным В.А. Ковды – 90-98%). Тем самым поддерживается известное постоянство состава, количества и концентрации компонентов, вовлеченных в круговорот. Но неполная замкнутость биогеохимических циклов, как мы увидим далее, имеет очень важное геохимическое значение и способствует эволюции биосферы. Именно поэтому происходит биогенное накопление кислорода в атмосфере, биогенное и хемогенное накопление соединений углерода в земной коре (нефть, уголь, известняки)

Общий биогеохимический круговорот элементов включает биогеохимические циклы отдельных химических элементов. Наиболее важное значение в функционировании биосферы в целом и отдельных геосистем более низкого классификационного уровня играют круговороты нескольких химических элементов, самых необходимых для живых организмов в связи с их ролью в составе живого вещества и физиологических процессах. К числу таких наиболее необходимых химических элементов относятся углерод, кислород, азот, сера, фосфор и др.

БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ ВАЖНЕЙШИХ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ:
УГЛЕРОДА, КИСЛОРОДА, АЗОТА, СЕРЫ, ФОСФОРА, КАЛИЯ, КАЛЬЦИЯ,
КРЕМНЕЗЕМА, АЛЮМИНИЯ, ЖЕЛЕЗА, МАРГАНЦА И ТЯЖЕЛЫХ МЕТАЛЛОВ

Углерод

Содержание углерода в атмосфере Земли составляет 0,046% в форме двуокиси углерода и 0,00012% в форме метана. Среднее его содержание в земной коре – 0,35%, а в живом веществе – около 18% (Виноградов, 1964). С углеродом тесно связан весь процесс возникновения и развития биосферы, т.к. именно углерод является основой белковой жизни на нашей планете, т.е. углерод является важнейшим химическим компонентом живого вещества. Именно этот химический элемент, благодаря своей способности к полимеризации и образованию прочных связей между своими и иными атомами, является основой всех высокомолекулярных органических соединений, максимально связывающих в своих структурах энергию

Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для углерода 100 и 1000 соответственно (Ковда, 1985).

Основным резервуаром углерода в биосфере, из которого этот элемент заимствуется живыми организмами для синтеза органического вещества, является атмосфера. Углерод содержится в ней, главным образом, в форме диоксида СО 2 . Небольшая доля атмосферного углерода входит в состав других газов – СО и различных углеводородов, в основном метана СН 4 . Но они в кислородной атмосфере неустойчивы, и вступают в химические взаимодействия с образованием, в конечном счёте, того же СО 2 .

Из атмосферы углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями, цианобионтами) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения – углеводы. Далее, в результате процессов метаболизма, с участием веществ, поступающих с водными растворами, в организмах синтезируются и более сложные органические вещества. Они не только используются для формирования растительных тканей, но также служат источником питания для организмов, занимающих очередные звенья трофической пирамиды – консументов. Таким образом, по трофическим цепям, углерод переходит в организмы различных животных.

Возвращение углерода в окружающую среду происходит двумя путями. Во-первых – в процессе дыхания. Суть процессов дыхания заключается в использовании организмами окислительных химических реакций, дающих энергию для физиологических процессов. Окисление органических соединений, для которого используется атмосферный или растворённый в воде кислород, имеет результатом разложение сложных органических соединений (пищи) с образованием СО 2 и Н 2 О. В итоге углерод в составе СО 2 возвращается в атмосферу, и одна ветвь круговорота замыкается.

Второй путь возвращения углерода – разложение органического вещества -минерализация. В условиях биосферы процесс этот в основном протекает в кислородной среде, и конечными продуктами разложения являются те же СО 2 и Н 2 О. Но большая часть углекислого газа при этом не поступает прямо в атмосферу. Углерод, высвобождающийся при разложении органического вещества, в основном остаётся в растворённой форме в почвенных, грунтовых и поверхностных водах. А также в виде растворённого углекислого газа, или же в составе растворённых карбонатных соединений – в форме ионов НСО 3 - или СО 3 2- . Он может после более или менее продолжительной миграции частично возвращаться в атмосферу, но большая или меньшая его доля всегда осаждается в виде карбонатных солей и связывается в составе литосферы.

Часть атмосферного углерода непосредственно поступает из атмосферы в гидросферу, растворяясь в воде. Главным образом, углекислый газ поглощается из атмосферы, растворяясь в водах Мирового Океана. Сюда же поступает и часть углерода, в тех или иных формах растворённого в водах суши. СО 2 , растворённый в морской воде, используется морскими организмами на создание карбонатного скелета (раковины, коралловые постройки, панцири иглокожих и т.д.). Он входит в состав пластов карбонатных пород биогенного происхождения, и таким образом на более или менее продолжительное время «выпадает» из биосферного круговорота.

В бескислородных средах разложение органического вещества также идёт с формированием в качестве конечного продукта углекислого газа. Здесь окисление протекает за счёт кислорода, заимствуемого из минеральных веществ бактериями-хемосинтетиками. Но процесс в этих условиях идёт медленнее, и разложение органического вещества обычно является неполным. В результате существенная часть углерода остаётся в составе не до конца разложившегося органического вещества и накапливается в толще земной коры в битуминозных илах, торфяниках, углях.

Накопители и хранители углерода – это живая биомасса, гумус, известняки и каустобиолиты. Естественными источниками углекислого газа, кроме вулканических эксгаляций, являются процессы разложения органического вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах. Техногенная углекислота составляет 20х10 9 т, что пока намного меньше, чем естественное ее поступление в атмосферу. За миллиарды лет с момента появления жизни на Земле весь углерод атмосферы и гидросферы неоднократно прошел через живые организмы. В течение всего 3-4лет живые организмы усваивают столько углерода, сколько его содержится в атмосфере. Следовательно, за этот период может полностью обновиться углеродный состав атмосферы, и условно можно считать, что углерод атмосферы за этот срок завершает свой цикл. Роль углерода в биосфере наглядно иллюстрируется схемой его круговорота (рис. 3.5.1).

Рис. 3.5.1. Схема биогеохимического цикла углерода

Из этой схемы наглядно видно, что растения, используя механизм фотосинтеза, выполняют функцию продуцентов кислорода и являются основными потребителями углекислого газа. Установлено, что зеленые растения поглощают в год ок. 220 млрд. т CO 2 .

Однако, цикл биологического круговорота углерода не замкнут. Что очень важно, в том числе, и для нас. Этот элемент нередко выводится из геохимического круговорота на длительный срок в виде карбонатных пород, торфов, сапропелей, углей, гумуса. Таким образом, часть углерода всё время выпадает из биологического круговорота, связываясь в литосфере в составе различных горных пород. Почему же тогда не возникает дефицита углерода в атмосфере? Причина в том, что его потеря компенсируется постоянным поступлением СО 2 в атмосферу в результате вулканической деятельности. То есть, в атмосферу постоянно поступают глубинные углекислый газ и окись углерода. Это позволяет поддерживать баланс углерода в биосфере нашей планеты.

Хозяйственная деятельность человека интенсифицирует биологический круговорот углерода и может способствовать повышению первичной, а, следовательно, и вторичной продуктивности. Но дальнейшая интенсификация техногенных процессов и может сопровождаться повышением концентрации двуокиси углерода в атмосфере. Повышение концентрации углекислоты до 0,07% резко ухудшает условия дыхания человека и животных. Расчеты показывают, что при условии сохранения современного уровня добычи и использования горючих ископаемых потребуется чуть больше 200 лет для достижения такой концентрации углекислого газа в атмосфере Земли. В отдельных крупных городах эта угроза вполне реальна уже сейчас.

Кислород

Кислород – самый распространенный элемент не только земной коры (его кларк 47), но и гидросферы (85,7%), а также живого вещества (70%). Существенную роль этот элемент играет и в составе атмосферы (более 20%). Благодаря исключительно высокой химической активности, кислород играет особо важную роль в биосфере. Он определяет окислительно-восстановительные и щелочно-кислотные условия растворов и расплавов. Для него характерна как ионная, так и неионная форма миграции в растворах.

Эволюция геохимических процессов на Земле сопровождается неуклонным увеличением содержания кислорода. В настоящее время количество кислорода в атмосфере составляет 1,2х10 15 тонн. Масштабы продуцирования кислорода зелеными растениями таковы, что это количество могло быть удвоено за 4000 лет. Но этого не происходит, так как в течение года разлагается примерно такое же количество органического вещества, которое образуется в результате фотосинтеза. При этом поглощается почти весь выделившийся кислород. Но благодаря незамкнутости биогеохимического круговорота в связи с тем, что часть органического вещества сохраняется и свободный кислород постепенно накапливается в атмосфере.

Главная «фабрика» по производству кислорода на нашей планете – зеленые растения, хотя в земной коре также протекают разнообразные химические реакциив результате которых выделяется свободный кислород.

Еще один миграционный цикл свободного кислорода связан с массобменом в системе природные воды – тропосфера. В воде океана находится от 3х10 9 до 10х10 9 м 3 растворенного кислорода. Холодная вода высоких широт поглощает кислород, а, поступая с океаническими течениями в тропики – выделяет его в атмосферу. Поглощение и выделение кислорода происходит и при смене сезонов года, сопровождающихся изменением температуры воды.

Кислород расходуется в громадном количестве окислительных реакций, большинство из которых имеет биохимическую природу. В этих реакциях высвобождается энергия, поглощенная в ходе фотосинтеза. В почвах, илах, водоносных горизонтах развиваются микроорганизмы, использующие кислород для окисления органических соединений. Запасы кислорода на нашей планете огромны. Он входит в состав кристаллических решеток минералов и высвобождается из них живым веществом.

Таким образом, общая схема круговорота кислорода в биосфере складывается из двух ветвей:

    образование свободного кислорода при фотосинтезе;

    поглощение кислорода в окислительных реакциях

Согласно расчетам Дж. Уолкера (1980) выделение кислорода растительностью мировой суши составляет 150х10 15 тонн в год; выделение фотосинтезирующими организмами океана – 120х10 15 тонн в год; поглощение в процессах аэробного дыхания – 2 10 х10 15 тонн в год; биологическая нитрификация и другие процессы разложения органического вещества – 70х10 15 тонн в год.

В биогеохимическом круговороте можно выделить потоки кислорода между отдельными компонентами биосферы (рис. 3.5.2).

Рис. 3.5.2. Схема биогеохимического цикла кислорода

В современных условиях установившиеся в биосфере потоки кислорода нарушаются техногенными миграциями. Многие химические соединения, сбрасываемые промышленными предприятиями в природные воды, связывают растворенный в воде кислород. В атмосферу выбрасывается все большее количество углекислого газа и различных аэрозолей. Загрязнение почв и, особенно, вырубка лесов, а также опустынивание земель на огромных территориях уменьшают производство кислорода растениями суши. Огромное количество атмосферного кислорода расходуется при сжигании топлива. В некоторых промышленно развитых странах кислорода сжигают больше, чем образуется его за счет фотосинтеза.

Водород

В земной коре свободный водород неустойчив. Он быстро соединяется с кислородом, образуя воду, а также участвует в других реакциях. Кроме того, в связи со своей ничтожно малой атомной массой он способен улетучиваться в космос (диссипировать). Значительное количество водорода поступает на поверхность Земли при вулканических извержениях. Постоянно образуется газообразный водород и в результате некоторых химических реакций, а также в процессе жизнедеятельности бактерий, разлагающих органическое вещество в анаэробных условиях.

Организмы закрепляют водород в биосфере планеты, связывая его не только в органическом веществе, но и участвуя в фиксации водорода минеральным веществом почвы. Это становится возможным в результате диссоциации кислотных продуктов метаболизма с высвобождением иона Н+. Последний, как правило, образует с молекулой воды посредством водородной связи ион гидроксония (Н 3 О+). При поглощении иона гидроксония некоторыми силикатами происходит их трансформация в глинистые минералы. Таким образом, как подчеркивал В.В. Добровольский, интенсивность продуцирования кислотных продуктов метаболизма является важным фактором гипергенного преобразования кристаллических горных пород и образования коры выветривания.

Из циклических процессов на поверхности Земли, в которых участвует водород, один из наиболее мощных – круговорот воды: ежегодно через атмосферу проходит более 520 тысяч кубометров влаги. Для создания фитомассы Мировой суши, существовавшей до вмешательства человека, по данным В.В. Добровольского (1998) было расщеплено примерно 1,8х1012 тонн воды и, соответственно, связано 0,3х1012 тонн водорода.

В процессе круговорота воды в биосфере происходит разделение изотопов водорода и кислорода. Пары воды при испарении обогащаются легкими изотопами, поэтому атмосферные осадки, поверхностные и грунтовые воды также обогащены легкими изотопами по сравнению с океаническими водами, имеющими устойчивый изотопный состав.


Так же, как круговорот углерода и другие круговороты, охватывает все области биосферы. В круговороте соединений азота ключевое значение принадлежит микроорганизмам: азотфиксаторам, нитрификаторам и денитрификаторам. Другие же организмы оказывают влияние на круговорот азота лишь после того, как он войдет в состав их клеток. Как известно, бобовые и представители некоторых родов других сосудистых растений (например, ольха, араукария, лох) фиксируют азот с помощью бактерий-симбионтов. То же наблюдается и у некоторых лишайников, фиксирующих азот с помощью симбиотических сине-зеленых водорослей. Очевидно, что биологическая фиксация молекулярного азота свободноживущими и симбиотическими организмами происходит и в автотрофном, и в гетеротрофном звеньях экосистем.
Из огромного запаса азота в атмосфере и осадочной оболочке литосферы в круговороте его участвует только фиксированный азот, усваиваемый живыми организмами суши и океана. В категорию обменного фонда этого элемента входят: азот годичной продукции биомассы, азот биологической фиксации бактериями и другими организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный
Нетрудно заметить, что, за исключением растительности тундры, где содержание азота и зольных элементов примерно одинаково, в растительности почти всех других типов масса азота в 2... 3 раза меньше массы зольных элементов. Количество элементов, оборачивающихся в течение года (т.е. емкость биологического круговорота), наибольшее в тропических лесах, затем в черноземных степях и широколиственных лесах умеренного пояса (дубравах).

Различают три типа азотфиксации:

Свободноживущими бактериями самых разнообразных таксономических групп.

Ассоциативная азотфиксация бактериями, находящимися в тесной связи с растениями (в прикорневой зоне или на поверхности листьев) и использующие их выделения (корневые выделения составляют до 30 % продукции фотосинтеза) как источник органического вещества. Азотфиксаторы живут в кишечнике многих животных (жвачные, грызуны, термиты) и человека (род Escherichia ).

Симбиотическая. Наиболее известен симбиоз клубеньковых бактерий (сем. Rhizobiaceae ) с бобовыми растениями. Обычно происходит корневое заражение, но известны растения, образующие клубеньки на стеблях и листьях.

Созданы бактериальные удобрения (например, нитрагин) для инокуляции (заражения) штаммами клубеньковых бактерий семян бобовых культур, что увеличивает их урожайность. Также для стимулирования процессов азотфиксации полезно вносить в почву небольшие «стартовые» дозы азотных удобрений, в то время как большие их дозы подавляют процесс.

Биогеохимический круговорот углерода в естественных условиях и влияние на круговорот загрязнения среды.

На суше круговорот углерода начинается с фиксации углекислого газа растениями в процессе фотосинтеза. Далее из углекислого газа и воды образуются углеводы и высвобождается кислород. При этом углерод частично выделяется во время дыхания растений в составе углекислого газа. Фиксированный в растении углерод в некоторой степени потребляется животными. Животные при дыхании так же выделяют углекислый газ. Отжившие животные и растения разлагаются микроорганизмами, в результате чего углерод мертвого органического вещества окисляется до углекислого газа и снова попадает в атмосферу. Подобный круговорот совершается и в океане.

Азот составляет почти 78% массы атмосферы. Основная его часть образует молекулы N 2 из двух атомов Большинство организмов не способно использовать этот азот из-за прочной связи атомов. Для них необходим азот в таких химических формах, как аммиак, ионы аммония, нитрат- и нитрит-ионы, которые участвуют в химических реакциях с кислородом. Поэтому для данного биогеохимического цикла важен связанный азот.

Природный биогеохимический цикл азота показан на рис.16. Суммарный поток азота в биосферу составляет порядка 14·10 10 т/г. Главный поставщик связанного азота – азотфиксирующие бактерии. Наиболее известные из них находятся в клубеньках бобовых растений. На их деятельности основан традиционный метод повышения плодородия. На поле выращивают бобовые культуры, потом их запахивают, накопленный в клубеньках азот переходит почву. На следующий год поле засевают другими культурами, которые используют этот азот. Некоторое количество азота связываться во время грозы. Электрический разряд нагревает воздух до температуры, при которой образуются различные оксиды азота. Как и в случае с углеродом, определенное количество соединений азота поступает из недр Земли.

Обратный процесс – восстановление нитрат-ионов выполняет цепочка бактерий:

· аммонифицирующие бактерии разлагают азотистые органические соединения, образуя аммиак (NH 3) или ионы аммония (NH 4 +);

· бактерии нитрификаторы окисляют аммиак в азотистую кислоту – NO 2 – . (нитриты);

· нитратные бактерии переводят азотистую кислоту в азотную кислоту – NO 3 – (нитраты) и цикл начинается снова.

Рис. 15. Биогеохимический круговорот азота

Антропогенный поток азота в биосферу примерно равен природному. Наибольший вклад дает применение азотных удобрений (8·10 10 т/г). Последствием может быть увеличению содержания в продуктах нитритов, нитратов и нитрозаминов с широким спектром токсического действия.

Источником оксидов азота (2·10 10 т/г) являются многие металлургические процессы, транспорт и сжигание топлива при производстве тепла и электроэнергии. Оксиды азота участвуют в образовании кислотных дождей и фотохимического смога.

Экосистемы усваивают определенное количество азота. Его избыток вымывается и накапливается в водоемах. Процесс увеличения в воде биогенных элементов (не только соединений азота) называется эвтрофикацией. Ее основные причины – сброс в водоемы промышленных и коммунальных сточных вод, химизация сельского хозяйства и концентрация животноводства. В настоящее время это явление охватило 90% всех озер мира. Процесс вызывает подчас необратимые нарушения водных экосистем и ухудшает качество вод (см. раздел 6.2.3.). Основные меры снижения эвтрофикации: очистка стоков и контроль за использование удобрений.

Глава 8

^ БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ ВАЖНЕЙШИХ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Биогеохимический циклы некоторых элементов: углерода, кислорода, азота, серы, фосфора, кремнезема,железа, алюминия, кальция, калия, натрия, магния

Биогеохимические циклы тяжелых металлов

^ ОБЩИЕ ЗАКОНОМЕРНОСТИ БИОГЕОХИМИЧЕСКОГО КРУГОВОРОТА ВЕЩЕСТВ

Океан и почвы представляют собой геохимически сопряженные планетарные суперландшафты. В современную эпоху суша в целом является элювиальной системой, океан - аккумулятивной системой. Земная кора, кора выветривания, почвы, организмы отдают в океан коллоидные и истинные растворы, механические осадки, органическое вещество. В этом процессе участвуют наземные, подпочвенные, подземные и сверхглубокие воды. За счет этого океан получает ежегодно огромное количество механических осадков. По расчетам В. А. Ковды (1973), это целая гора с основанием 1 км 2 высотой 10-16 км, содержащая растворимые соли (3-5%), карбонаты кальция (7-8%), органическое вещество (1-3%). Часть этих компонентов океан различными путями возвращает на сушу (инфильтрация, трансгрессия, приливы, цунами, горообразование, эоловый перенос и т.д.).

История геохимических «отношений» между океаном и сушей отражена в химическом составе почв и океанических вод. Элементы, являющиеся основой жизни, - Si, Al, Fe, Mn, С, Р, N, Са, К - аккумулируются в почве. «Аквафилы» - Н, О, Na, Cl, S, Mg - составляют химическую основу океана (табл. 30).

Таблица 30 - Химический состав почв и океанических вод, %


Элемент

Почва

Океан

Элемент

Почва

Океан

О

49

85,8

Мg

6 х 10 -1

1,4 x 10 -1

Н

1

10,7

К

1,36

3,8 x 10 -2

S

33

5 х 10 -5

С

2,00

2 х 10 -5

Al

7,3

n х 10 -6

Р

8 x 10 -2

5 x 10 -6

Na

0,6

1

N

1 х 10 -1

6,7 x 10 -5

Fe

3,8

5 x 10 -6

S

8,5 x 10 -2

8,8 х 10 -2

Mn

8,5 x 10 -2

4 x 10 -7

Cl

1 х 10 -2

1,89

Са

1,37

4 x 10 -2

Таким образом, круговорот веществ в системе континенты - океан - верхняя мантия - континенты обогащает океан химическими элементами.

На суше в процессах выветривания и почвообразования образуются вторичные соединения, которые различаются по геохимической подвижности. Они включаются в новые циклы геологического, почвенного и биологического круговоротов веществ, образуя единый биогеохимический круговорот веществ на планете.

Вынос и перераспределение продуктов выветривания и почвообразования в ландшафтах происходят в горизонтальном направлении по уклону местности, а также в вертикальном - как в восходящем, так и нисходящем направлениях. В результате постоянно текущих циклических процессов образуются почвы и их горизонты, почвенный покров как совокупность, осадочные породы. Сложившиеся и на первый взгляд неизменные типы почв и коры выветривания на самом деле являются не только продуктами движения и перераспределения веществ в биогеохимическом круговороте, но и длительной, устойчивой формой существования и проявления этих педогеохимических процессов.

Подвижность химических элементов зависит от формы их нахождения в природе и той роли, которую они выполняют в живых организмах. В самом общем виде миграционная способность продуктов выветривания и почвообразования определяется степенью дисперсности материала и его растворимостью:


  • Обломочный материал - осыпи, оползни, волочение по дну реки;

  • Песок, пыль, глина - водные и воздушные суспензии;

  • Почвенный гумус - ионные и коллоидные растворы, тонкие суспензии;

  • Fe, Al, Mn, Ni, Co - комплексные соединения с органическими кислотами, бикарбонаты, коллоидные растворы, тонкие суспензии гидрооксидов;

  • SiO 2 (подвижный) - ионные, молекулярные, коллоидные растворы, тонкие суспензии аморфного кремнезема;

  • Соли - водные растворы, тонкие суспензии кристаллов, эоловые взвеси.
Миллиарды тонн минеральных веществ удерживают в своих тканях растительные и животные организмы. Чем больше биогенное значение химического элемента, тем в большей степени он захватывается живыми организмами и, следовательно, оказывается защищенным от выноса из почв грунтовыми и речными водами.

Суша и океан находятся в состоянии непрерывного циклического обмена и с нижними слоями атмосферы – тропосферой. Они поставляют аэрозольные частицы в воздух и получают их обратно с осадками и в форме сухих выпадений. Частицы континентального происхождения сравнительно крупные. Их средний размер 0,02-0,03 мм. Над океаном преобладают более мелкие частицы - размером около 0,002 мм. Как показал А. П. Лисицын (1978), частицы размером 0,1-0,01 мм могут переноситься в нижних слоях тропосферы на расстояния в сотни и тысячи километров. Дальность переноса более мелких частиц достигает 10 тыс. км. С поверхности континентов таким образом выносятся пылеватые и илистые частицы почвы, горных пород, вулканического пепла. Среди аэрозольных частиц морского происхождения преобладают растворимые в воде соли.

^ БИОГЕОХИМИЧЕСКИЙ ЦИКЛ УГЛЕРОДА

Содержание углерода в атмосфере Земли составляет 0,046% в форме двуокиси углерода и 0,00012% в форме метана. В земной коре его содержится 0,35%, а в живом веществе около 18% (Виноградов, 1964). С углеродом связан процесс возникновения и развития биосферы, именно углерод обусловливает огромное разнообразие и сложность строения веществ, так как этот элемент способен соединяться с большинством из элементов самыми разнообразными способами. Роль углерода в биосфере лучше всего иллюстрируется схемой его круговорота (см. рис. 9). Схема составлена В. А. Ковдой по данным Ничипоровича и Дювиньо. Из этой схемы следует, что в биосфере растения, используя механизм фотосинтеза, выполняют функцию продуцента кислорода и основного потребителя углекислого газа.

Хранители углерода - живая биомасса, гумус, известковые осадочные породы и каустобиолиты. В этой схеме учтено, что естественными источниками СО 2 в природе, кроме вулканических эксгаляций, являются процессы разложения органического вещества, дыхание, окисление ОВ в почве и других природных средах. Т.е. жизнь в почвах и разложение ОВ - главный источник углекислоты, поступающей в атмосферу. Техногенная углекислота, составляет 20 х 10 9 т, что намного меньше, чем природные поступления, и ее роль незначительна в этом круговороте.

За геологический период с момента появления жизни на Земле углерод атмосферы и гидросферы неоднократно прошел через живые организмы. В течение 3-4 лет растения усваивают столько углерода, сколько его содержится в атмосфере. Следовательно, за четыре года может обновиться углеродный состав атмосферы, и условно можно считать, что углерод атмосферы за этот срок завершает свой цикл (Гришина, 1976). Цикл оборота углерода гумосферы охватывает 300-400 лет. Однако цикл биологического круговорота углерода не замкнут: этот элемент часто выходит из круговорота на длительный срок в виде карбонатов, торфов, сапропелей, углей, гумуса. С другой стороны, нарушение цикла происходит и благодаря поступлению в атмосферу глубинного углекислого газа и окиси углерода.

Для прогнозирования поведения углерода в биосфере необходимы массовые сведения по содержанию углекислоты в атмосфере разных регионов и на разных уровнях, сведения о влиянии изменения концентрации ее в атмосфере на первичную продуктивность. В пределах одного и того же региона накопление, трансформация и миграция углерода различны в элювиальном, транзитном и аккумулятивном ландшафтах, в естественных биоценозах и в агроценозах (табл. 31). Л. А. Гришина отмечает, что ельник-кисличник из сравниваемых биогеоценозов находится в наиболее благоприятных условиях, приуроченный к дерново-подзолистым легкосуглинистым почвам на смешанной морене, он характеризуется наиболее высокой продуктивностью и самым мощным потоком углерода. За ним по убывающей следуют сосняк-зеленомошник, развивающийся на слабоподзолистых почвах озов, и на последнем месте сосняк сфагновый на торфяном болоте. Агроценоз по продуктивности занимает промежуточное место между ельником и сосняком, но имеет, естественно, другое качество продукции и иной ритм потока углерода.

Рис. 9. Модель цикла углерода, млрд. тонн (составлена В. А. Ковдой по данным Ничипоровича и Дювиньо): I - масса углерода в форме СО 2 в атмосфере и океане; II -количество СО 2 , поступающего в атмосферу в процессах окисления; III - количество окисленного органического вещества (дыхание, горение); IV - биомасса сухопутных живых организмов; V- масса, использованная для питания этими организмами

Таблица 31 - Поток углерода в различных экосистемах Валдая, т/га (Гришина, 1976)

Фитоценоз


Тип ландшафта, биоценоз

Элювиальный,

Зеленомошник


Транзитный,

Кисличник


Аккумулятивный

Супераквальный,

Сосняк сфагновый


Элювиальный,

Агроценоз


Запасы фигомассы

108

182

36

-

Чистая первичная продукция

4,2

8,3

1,1

5

Годовой опад

1.0

3,2

0,5

5

Подстилка

18

9,4

22

-

Гумус в почве

19

48,5

100 (торф)

49

Углерод в

прир. водах, мг/л


27

45

-

-

Хозяйственная деятельность человека интенсифицирует биологический круговорот углерода и может способствовать повышению первичной и, следовательно, вторичной продуктивности. Но дальнейшая интенсивность этой деятельности может сопровождаться повышением концентрации двуокиси углерода в атмосфере. Повышение концентрации углекислоты до 0,07% резко ухудшает условия дыхания человека и животных. Расчеты показывают, что при условии сохранения современного уровня добычи и использования горючих ископаемых потребуется чуть более 200 лет для достижения такой концентрации в атмосфере Земли. Локально в отдельных крупных городах эта угроза вполне реальна уже в настоящее время.

^ БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ КИСЛОРОДА

Кислород - самый распространенный элемент земной коры: его кларк равен 47. Еще выше концентрация кислорода в мировом океане - 85,7% и в живом веществе -70%. Благодаря исключительно высокой химической активности, кислород играет особо важную роль в земной коре. Он определяет окислительно-восстановительные и щелочно-кислотные условия растворов и расплавов, формирование геохимических объектов. Для него характерна как ионная, так и не ионная форма миграции в растворах.

Эволюция процессов на Земном шаре сопровождается увеличением содержания кислорода. Наличие органического вещества установлено в древних осадочных отложениях, возраст которых исчисляется в 3,8 млрд. лет. Следовательно, выделение кислорода в процессе фотосинтеза продолжается миллиарды лет. В настоящее время количество кислорода в атмосфере равно 1,185 х 10 15 тонн. Масштабы продуцирования кислорода таковы, что указанное количество при сохранении скорости могло бы быть удвоено примерно за 4 000 лет. Но этого не происходит, так как в течение года различными путями разлагается примерно такое же количество органического вещества, какое образуется в ходе фотосинтеза, и при этом поглощается почти весь выделившийся кислород. Тем не менее, благодаря сохранению части органического вещества, свободный кислород постепенно накапливается в атмосфере.

В биосфере в результате непрерывно протекающих процессов биологического круговорота наблюдается резкая дифференциация его содержания в различных природных оболочках. Если в живом веществе кларк концентрации кислорода составляет 1,5%, в гидросфере - 1,8, то в изверженных породах земной коры только 0,8-1,03, а в антраците всего 0,02%.

Реакции образования кислорода в земной коре весьма разнообразны, но главная «фабрика» по его производству - зеленые растения. Именно в процессе фотосинтеза высвобождается основная масса свободного кислорода, обладающего чрезвычайно высокой химической активностью.

Второй миграционный цикл свободного кислорода связан с массообменом в системе природные воды -тропосфера. В воде океана находится от 3 х 10 9 до 10 х 10 9 кубических метров растворенного кислорода. Холодная вода высоких широт поглощает кислород, поступая с океаническими течениями в тропический пояс, она выделяет кислород. Поглощение и выделение кислорода происходят и при смене сезонов года, сопровождающихся изменением температуры воды. По расчетам А. П. Виноградова (1967), в годовой оборот между тропосферой и океаном вовлекается примерно 5900 х 10 9 тонн кислорода.

Кислород расходуется в громадном количестве окислительных реакций, большинство из которых имеет биохимическую природу. В этих реакциях высвобождается энергия, поглощенная в ходе фотосинтеза. В почвах, ил ах, водоносных горизонтах развиваются микроорганизмы, использующие кислород для окисления органических соединений. Запасы кислорода на планете огромны. Он входит в состав кристаллических решеток минералов и высвобождается из них живым веществом.

Таким образом, общая схема круговорота кислорода в биосфере складывается из двух основных ветвей:

Образование свободного кислорода при фотосинтезе;

Поглощение кислорода в окислительных реакциях.

Согласно расчетам Дж. Уолкера (1980), основные составляющие глобального цикла кислорода следующие:


  • Выделение растительностью мировой суши - 150 х 10 15 тонн в год;

  • Выделение фотосинтезирующими организмами океана - 120 х 10 15 тонн в год;

  • Поглощение процессами аэробного дыхания - 210 х 10 15 тонн в год;

  • Биологическая нитрификации и др. процессы - 70 х 10 15 тонн в год.

В биогеохимическом круговороте можно выделить потоки кислорода, четко выраженные между отдельными компонентами биосферы (рис. 10).

^ Рис. 10 Круговорот кислорода в природе.

В современных условиях установившиеся в биосфере потоки кислорода и кислородсодержащих соединений нарушаются техногенными миграциями. Химические соединения, сброшенные предприятиями в природные воды, связывают растворенный в воде кислород, нарушая природные потоки этого элемента. В атмосферу выбрасывается большое количество углекислого газа, различных аэрозолей, что также ухудшает кислородный обмен. Загрязнение почв, вырубка лесов, опустынивание земель на огромных территориях уменьшают обмен кислородом и углекислым газом между атмосферой и сушей. Огромное количество атмосферного кислорода расходуется при сжигании топлива. В некоторых промышленно развитых странах кислорода сжигают больше, чем его образуется за счет фотосинтеза.

^ БИОГЕОХИМИЧЕСКИЙ ЦИКЛ ВОДОРОДА

В земной коре свободный водород неустойчив. Он быстро соединяется с кислородом, образуя воду, участвует и в других реакциях. Кроме того, он, благодаря своей легчайшей массе, способен диссипировать, т.е. улетучиваться в космос. Однако значительное количество газообразного водорода поступает на поверхность Земли при вулканических извержениях. Постоянно образуется газообразный водород и в результате некоторых химических реакций, а также деятельности бактерий, разлагающих органическое вещество в анаэробных условиях. Тем не менее, наблюдается постепенное накопление кислорода в атмосфере планеты, что связано и с диссипацией водорода.

Организмы закрепляют водород в биосфере планеты, связывая его не только в органическом веществе, но и участвуя в фиксации водорода минеральным веществом почвы. Это становится возможным в результате диссоциации кислотных продуктов метаболизма с высвобождением иона Н + . Последний, как правило, с молекулой воды образует посредством водородных связей ион гидроксония (Н 3 О +). При поглощении иона гидроксония гипогенными силикатами происходит трансформация их кристаллохимических структур в глинистые минералы. Таким образом, как подчеркивает В. В. Добровольский (1998), интенсивность продуцирования кислотных продуктов метаболизма является важным фактором гипергенного преобразования кристаллических горных пород и образования коры выветривания.

Из циклических процессов в поверхностных оболочках Земли один из наиболее мощных - круговорот воды: ежегодно через атмосферу проходит более 520 тыс. м 3 влаги. Для создания массы растительности Мировой суши, существовавшей до вмешательства человека, было расщеплено примерно 1,8 х 10 12 тонн воды и соответственно связано 0,3 х 10 12 тонн водорода (цит. по Добровольскому, 1998). В настоящее время в процессе фотосинтеза природной растительностью на суше и фотосинтетиками в океане в течение года расщепляется около 200 х 10 9 тонн воды и в органическом веществе связывается примерно (30-35)хЮ 9 тонн водорода.

В процессе круговорота воды в биосфере происходит фракционирование изотопов кислорода и водорода. Пары воды при испарении обогащаются легкими изотопами, поэтому атмосферные осадки, поверхностные и грунтовые воды содержат больше легких изотопов. Океанические воды характеризуются устойчивым изотопным составом. Материковые льды Арктики и Антарктиды содержат наиболее легкую воду, так как активность разделения изотопов кислорода усиливается при понижении температуры.

^ БИОГЕОХИМИЧЕСКИЙ ЦИКЛ АЗОТА

Д. Н. Прянишников (1945) показал исключительное значение азота и его соединений для растений. Азот и его соединения играют в жизни биосферы и всей планеты, в формировании почвенного покрова и плодородия экосистем такую же важную и незаменимую роль, как и углерод. Биофильность азота сравнима с биофильностью углерода: индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для углерода 100 и 1000 соответственно, а для азота - 1000 и 10000 соответственно (Ковда, 1985). Из других биофильных элементов только фосфор характеризуется таким же высоким индексом концентрации в биомассе (1000-10000; Speidel, Agnew, 1982).

Около 80% запасов азота сосредоточено в атмосфере планеты, что связано с направлением биогеохимических потоков соединений азота, образующихся при денитрификации. Первично азот в атмосфере был, вероятно, результатом процессов дегазации верхней мантии, магмы и вулканических выделений. Электрические и фотохимические реакции в высоких слоях атмосферы приводят к заметному поступлению соединений азота на сушу и в океан с атмосферными осадками (3-8 кг/га аммонийного азота в год и 1,5-6,0 кг/га нитратного - Goldschmidt, 1954). Этот азот включается в общий биогеохимический поток растворенных соединений, мигрирующих с водными массами, участвует в почвообразовательных процессах и в формировании биомассы растений.

^ Рис. 11. Схема цикла азота в сухопутных системах (составлена Ellenberg, 1971, цит. по Ковде, 1985)

Общая направленность биогеохимического круговорота азота на планете - аккумуляция в молекулярной форме в атмосфере (рис. 11). Огромное количество азота содержит биосфера в связанном виде: в органическом веществе почвенного покрова (1,5x10 11 т), в биомассе растений (1,1x10 9 т), в биомассе животных (6,1x10 7 т).

В больших количествах азот содержится в биогенных ископаемых.

Вместе с тем, вследствие высокой растворимости солей азотной кислоты и солей аммония, азота в почве мало и почти всегда недостаточно для питания растений. Поэтому потребность культурных растений в азоте всегда велика.

В связи с этим велика и роль азотных удобрений: 30-35 млн. тонн азота ежегодно вносится в почву в виде минеральных удобрений. Поступление за счет азотных удобрений составляет 30% от общих поступлений азота на сушу и в океан.

Это часто приводит к загрязнению среды и тяжелым заболеваниям человека и животных. Особенно велики потери нитратных форм азота, так как он не сорбируется почвой, легко вымывается водами, восстанавливается в газообразные формы и до 20-40% его теряется для питания растений. Все это, естественно, сказывается на биогеохимическом цикле азота.

Существенным и тревожным нарушением цикла азота является сильное увеличение отходов животноводства, отходов и стоков больших городов, поступление в атмосферу NH 3 и оксидов азота при сжигании угля, нефти, мазута и т.д. Опасно проникновение оксидов азота в стратосферу (ядерные взрывы, выхлопы сверхзвуковых самолетов, ракет), так как это может быть причиной разрушения озонового слоя.

Таким образом, для удовлетворения нужд человечества потребность в азотных удобрениях должна быть компенсирована как можно быстрее. Но культура их применения должна быть более высокой.



Похожие публикации